

Freedom of Information Publication Coversheet

The following information is provided pursuant to section 28 of the *Freedom of Information Act 2016*.

FOI Reference: CMTEDDFOI 2020-144

Information to be published	Status
1. Access application	Published
2. Decision notice	Published
3. Documents and schedule	Published
4. Additional information identified	No
5. Fees	Waived
6. Processing time (in working days)	35
7. Decision made by Ombudsman	N/A
8. Additional information identified by Ombudsman	N/A
9. Decision made by ACAT	N/A
10. Additional information identified by ACAT	N/A

To FOI Coordinator, Information Access Team Chief Minister Treasury and Economic Development Directorate ACT Government GPO Box 158 CANBERRA ACT 2601

Date 27.07.2020

Subject

Request for Information - Contamination Assessments and Environmental Audit Reports - Block 14 Section 38 Fyshwick and Block 11 Section 47 Fyshwick

Dear Sir/Madam

Lolita (ACT) No 1 Pty Ltd and Lolita (ACT) No 2 Pty Itd (the Lessees) are the Crown lessees of land described as Block 11 & 12 Section 38 Fyshwick. This is an application for access to information made on behalf of those entities pursuant to Part 5 Division 5.1 Section 30 of the *Freedom of Information Act 2016* (the FOI Act).

Background

Block 11 & 12 Section 38 Fyshwick are currently included on the ACT Register of Contaminated Sites. Information previously provided indicates that the potential contamination is not limited to Blocks 11 & 12 Section 38 Fyshick and may extend on adjacent land. Our environmental consultant and environmental auditor have identified previous reports commissioned by the ACT Government for that adjacent land being Block 14 Section 38 Fyshwick and Block 11 Section 47 Fyshwick. We seek access to those reports as our environmental consultant and environmental auditor have informed us that access to those reports will assist in undertaking a thorough environmental assessment and subsequent validation of our site.

Location of Information

In response to initial enquiries we have been advised that the reports are not available via a public register. We understand from email advice of 20 July 2020 that the relevant reports are held in hard copy by the ACT Environment Protection Authority (EPA). However, previous requests for access have proven fruitless and consequently we have had to have recourse to the FOI Act.

Information Requested

The requested information comprises the following.

In respect of Block 14 Section 38 Fyshwick:

 Site Audit Report Proposed East Lake Development ACT dated 15 July 2011 by Ms Rebeka Hall of WSP Environmental Pty Ltd.

In respect of Block 11 Section 47 Fyshwick:

- "Underground Fuel Storage Tank Removal and Excavation Validation, Commonwealth Railyards, Kingston, ACT", 12 March 2002 by PPK Environmental & Infrastructure P/L";
- "Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor", 16 August 2001 by PPK Environmental & Infrastructure P/L";
- "Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor", 16 March 2001 by PPK Environmental & Infrastructure P/L";
- "Report on Further Soil and Groundwater Investigations Canberra Railway Station and Rail Corridor", 14 January 1999 by PPK Environmental & Infrastructure P/L";

- "Report on Further Soil and Groundwater Investigations Canberra Railway Station and Rail Corridor", 17 December 1999 by PPK Environmental & Infrastructure P/L;
- "Phase II Environmental Site Assessment, Canberra Railway Station and Rail Corridor", 12 November 1998 by PPK Environmental & Infrastructure P/L;
- "Environmental Audit of the Australian National Facilities, Canberra Railway Station Yards and Rail Corridor", 16 March 1998 by PPK Environmental & Infrastructure P/L.

Notices and Communications

Any communications and/or notices issued pursuant to this request for information should be in writing and may be sent to

or via post to;

Your earliest possible response is requested.

Yours sincerely

Our ref: CMTEDDFOI 2020-144

via email:	

Dear

FREEDOM OF INFORMATION REQUEST

I refer to your application under section 30 of the *Freedom of Information Act 2016* (the Act), received by the Chief Minister, Treasury and Economic Development Directorate (CMTEDD) on 27 July 2020, in which you sought access to:

In respect of Block 14 Section 38 Fyshwick:

• Site Audit Report Proposed East Lake Development ACT dated 15 July 2011 by Ms Rebeka Hall of WSP Environmental Pty Ltd.

In respect of Block 11 Section 47 Fyshwick:

- "Underground Fuel Storage Tank Removal and Excavation Validation, Commonwealth Railyards, Kingston, ACT", 12 March 2002 by PPK Environmental & Infrastructure P/L";
- "Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor", 16 August 2001 by PPK Environmental & Infrastructure P/L";
- "Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor", 16 March 2001 by PPK Environmental & Infrastructure P/L";
- "Report on Further Soil and Groundwater Investigations Canberra Railway Station and Rail Corridor", 14 January 1999 by PPK Environmental & Infrastructure P/L";
- "Report on Further Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor", 17 December 1999 by PPK Environmental & Infrastructure P/L;
- "Phase II Environmental Site Assessment, Canberra Railway Station and Rail Corridor", 12 November 1998 by PPK Environmental & Infrastructure P/L;
- "Environmental Audit of the Australian National Facilities, Canberra Railway Station Yards and Rail Corridor", 16 March 1998 by PPK Environmental & Infrastructure P/L.

Authority

As an appointed Information Officer under section 18 of the Act, I am authorised to make a decision on access or amendment to government information in the possession or control of CMTEDD.

Timeframes

In accordance with section 40 of the Act, CMTEDD was required to provide a decision on your access application by 24 August 2020 however, following on from third party consultations, the due date is now 14 September 2020.

Decision on access

Searches were completed for relevant documents and eight documents were identified that fall within the scope of your request.

I have included as **Attachment A** to this decision the schedule of relevant documents. This provides a description of the documents that fall within the scope of your request and the access decision for each of the documents.

I have decided to grant access in full to four documents under section 26(1) of the *Territory Records Act 2004* and partial access to three documents under the *Freedom of Information Act 2016*. I have decided to refuse access to one document under section 43(1)(d) and section 45(f) of the Act because the information you are seeking has already been provided to you.

My access decisions are detailed further in the following statement of reasons and the documents released to you are provided as **Attachment B** to this letter.

In accordance with section 54(2) of the Act a statement of reasons outlining my decisions is below.

Statement of Reasons

In reaching my access decisions, I have taken the following into account:

- the Act;
- the content of the documents that fall within the scope of your request;
- the Territory Records Act 2002.

Exemption claimed

Four documents identified as within scope are over 20 years old and are subject to access provisions under section 26 of the *Territory Records Act 2002*. Section 26 states that:

- (1) A record of an agency is open to public access under this Act on the next Canberra Day after the end of 20 years after the record, or the original of which it is a copy, came into existence.
- (2) A person is entitled to access under this Act to a record of an agency that is open to public access.

I have considered these four documents and have decided that these records are able to be released to you in full.

My reasons for deciding not to grant access to the identified document are as follows:

Section 43(1)(d) states:

(1) A respondent may refuse to deal with an access application wholly or in part only if—
 (d) the government information is already available to the applicant (see section 45).

Section 45(f) states:

For section 43(1)(d), government information is already available to the applicant only if the information—

(f) has otherwise previously been given to the applicant.

Information that would, on balance, be contrary to the public interest to disclose under the test set out in section 17 of the Act

Public Interest

The Act has a presumption in favour of disclosure. As a decision maker I am required to decide where, on balance, public interests lies. As part of this process I must consider factors favouring disclosure and non-disclosure.

In *Hogan v Hinch* (2011) 243 CLR 506, [31] French CJ stated that when 'used in a statute, the term [public interest] derives its content from "the subject matter and the scope and purpose" of the enactment in which it appears'. Section 17(1) of the Act sets out the test, to be applied to determine whether disclosure of information would be contrary to the public interest. These factors are found in subsection 17(2) and Schedule 2 of the Act.

Taking into consideration the information contained in the documents found to be within the scope of your request, I have identified that the following public interest factors are relevant to determine if release of the information contained within these documents is within the 'public interest'.

Factors favouring disclosure in the public interest:

(a) disclosure of the information could reasonably be expected to do any of the following:

(xi) reveal environmental or health risks or measures relating to public health and safety.

Having considered the factors identified as relevant in this matter, I consider that release of information contained in these documents may contribute to revealing environmental or health risks or measures by allowing you to have a record of the documents associated with your access request. However, when considering this finding against the factors favouring non-disclosure, I am satisfied that the protection of an individual's right to privacy, especially in the course of their employment, is a significant factor as the parties involved have provided their personal information for the purposes of completing contracted reporting which, in my opinion, outweighs the benefit which may be derived from releasing the personal information of the individual's involved in this matter. These individuals are entitled to expect that the personal information they have supplied as part of this process will be dealt with in a manner that protects their privacy.

Factors favouring nondisclosure in the public interest:

(a) disclosure of the information could reasonably be expected to do any of the following:
 (ii) prejudice the protection of an individual's right to privacy or any other right under the Human Rights Act 2004;

(xi) prejudice trade secrets, business affairs or research of an agency or person.

I have also considered the impact of disclosing information which relates to business affairs. In the case of *Re Mangan and The Treasury* [2005] AATA 898 the term 'business affairs' was interpreted as meaning 'the totality of the money-making affairs of an organisation or undertaking as distinct from its private or internal affairs'. Schedule 2 section 2.2(a)(xi) allows for government information to be withheld from release if disclosure of the information could reasonably be expected to prejudice the trade secrets, business affairs or research of an agency or person.

In addition to the above factors a third party has stated that the reports in question were "for the benefit of the Client and no other party". The reports further state that: "Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters".

Charges

Pursuant to *Freedom of Information (Fees) Determination 2017 (No 2)* processing charges are applicable for this request because the total number of pages to be released to you exceeds the charging threshold of 50 pages. However, the charges have been waived in accordance with section 107 (2)(e) of the Act.

Online publishing – Disclosure Log

Under section 28 of the Act, CMTEDD maintains an online record of access applications called a disclosure log. Your original access application, my decision and documents released to you in response to your access application will be published on the CMTEDD disclosure log 3 days after the date of my decision. Your personal contact details will not be published.

You may view CMTEDD disclosure log at <u>https://www.cmtedd.act.gov.au/functions/foi/disclosure-log-2020</u>.

Ombudsman Review

My decision on your access request is a reviewable decision as identified in Schedule 3 of the Act. You have the right to seek Ombudsman review of this outcome under section 73 of the Act within 20 working days from the day that my decision is published in CMTEDD disclosure log, or a longer period allowed by the Ombudsman.

We recommend using this form *Applying for an Ombudsman Review* to ensure you provide all of the required information. Alternatively, you may write to the Ombudsman at:

The ACT Ombudsman GPO Box 442 CANBERRA ACT 2601

Via email: actfoi@ombudsman.gov.au

ACT Civil and Administrative Tribunal (ACAT) Review

Under section 84 of the Act, if a decision is made under section 82(1) on an Ombudsman review, you may apply to the ACAT for review of the Ombudsman decision. Further information may be obtained from the ACAT at:

ACT Civil and Administrative Tribunal Level 4, 1 Moore St GPO Box 370 Canberra City ACT 2601 Telephone: (02) 6207 1740 <u>http://www.acat.act.gov.au/</u>

Should you have any queries in relation to your request please contact me by telephone on 6207 7754 or email <u>CMTEDDFOI@act.gov.au</u>.

Yours sincerely,

1. Rock.

Philip Dachs Information Officer Information Access Team Chief Minister, Treasury and Economic Development Directorate

14 September 2020

FREEDOM OF INFORMATION REQUEST SCHEDULE

WHAT ARE THE PARAMETERS OF THE REQUEST	Reference NO.
Environmental reports for Block 14 Section 38 Fyshwick and Block 11 Section 47 Fyshwick	CMTEDDFOI 2020-144

Ref No	Page number	Description	Date	Status	Reason for Exemption	Online Release Status
1	1-95	"Underground Fuel Storage Tank Removal and Excavation Validation, Commonwealth Railyards, Kingston, ACT", 12 March 2002 by PPK Environmental & Infrastructure P/L"	12-Mar-2002	Partial release	Sch 2 s2.2 (a)(ii)	Yes
2	96-196	DRAFT - "Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor", 16 August 2001 by PPK Environmental & Infrastructure P/L"	16-Aug-2001	Partial release	Sch 2 s2.2 (a)(ii) Sch 2 s2.2 (a)(xi)	Yes
3	197-300	"Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor", 16 August 2001 by PPK Environmental & Infrastructure P/L"	16-Aug-2001	Partial release	Sch 2 s2.2 (a)(ii) Sch 2 s2.2 (a)(xi)	Yes
4	301-597	"Report on Further Soil and Groundwater Investigations Canberra Railway Station and Rail Corridor", 14 January 1999 by PPK Environmental & Infrastructure P/L"	14-Jan-1999	Full release	N/A	Yes
5	598-1099	"Report on Further Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor", 17 December 1999 by PPK Environmental & Infrastructure P/L	17-Dec-1999	Full release	N/A	Yes
6	1100-1506	"Phase II Environmental Site Assessment, Canberra Railway Station and Rail Corridor", 12 November 1998 by PPK Environmental & Infrastructure P/L	12-Nov-1998	Full release	N/A	Yes
7	1507-1582	"Environmental Audit of the Australian National Facilities, Canberra Railway Station Yards and Rail Corridor", 16 March 1998 by PPK Environmental & Infrastructure P/L	16-Mar-1998	Full release	N/A	Yes
8		Site Audit Report Proposed East Lake Development ACT dated 15 July 2011 by Ms Rebeka Hall of WSP Environmental Pty Ltd	15-Jul-2011	Exempt	Section 43(1)(d) Section 45(f)	Yes
fotal No of Docs						
8						

her 21/3/02m Span Copy and File

Underground Fuel Storage Tank Removal and Excavation Validation, Commonwealth Railyards, Kingston, ACT

Indec Consulting

12 March 2002 27L311E 02-0082-01

PPK House 101 Pirie Street Adelaide SA 5000 GPO Box 398 Adelaide SA 5001 Telephone +61 8 8405 4300 Facsimile +61 8 8405 4301 Ermail adelaide@ppk.com.au

ABN 84 797 323 433 NCSI Certified Quality System to ISO 9001

A Partnership between PPK E&I Pty Ltd and Parsons Brinckerhoff International (Australia) Pty Ltd Parsons Brinckerhoff Companies

©PPK Environment & Infrastructure [2002]

This document is the property of PPK Environment & Infrastructure ("PPK"). This document and the information contained in it are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PPK. PPK makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information contained in it.

Our Reference 27L311E/PHW/cc

12 March 2002

Mr Colin Denton INDEC Consulting 300 Flinders Street ADELAIDE SA 5000

Dear Colin

PPK House 101 Pirie Street Adelaide SA 5000 GPO Box 398 Adelaide SA 5001 Telephone + 61 8 8405 4300 Facsimile + 61 8 8405 4301 Email adelaide@ppk.com.au

ABN 84 797 323 433 NCSI Certified Quality System to ISO 9001

Underground Fuel Storage Tank Removal and Excavation Validation, Commonwealth Railyards, Kingston, ACT

PPK is pleased to provide our report on the above works at the Canberra Railyards. Two copies have been sent direct to Environment ACT as required by the Development Application Approval.

The report documents the removal of three disused fuel underground storage tanks and the reinstatement of the area to the appropriate NSW/ACT standards.

Yours faithfully

Schedule 2.2(a)(ii)

Stuart Glenn Principal, Environmental Division PPK E&I Pty Limited

A partnership between PPK E&I Pty Ltd ABN 80 078 004 798 and Parsons Brinckerhoff International (Australia) Pty Ltd ABN 36 006 475 056

Document ID: 27L311E 02-0082-01	Revision Status: B
Title: Underground Storage Tank (UST) and Site Validation, Former Commonwealth Railyards, Kingston, ACT.	Job Number: 27L311E
Client: Indec Consulting	Date of Issue: March 2002
Release Status (draft, final copy) Final	Report Number: 02-0082-01

	Authority Level			
		Name	Signature	Date
Prepared by	4	Grant Sainsbery	Schedule 2.2(a)(ii)	12.3.02
Reviewed by	3	Greg Watkins/ Peter Woods		12.03.02
Approved by	3	Stuart Glenn		14/100

Dispatch Method			
	Date	Reference	Comments
Hand			
Courier			-
Post			
Other			

DISTRIBUTION				
-		No. of copies		
Organisation	Attention		Comment	Project Manager*
Indec Consulting	Colin Denton	3		PARN 19.3.02
PPK Adelaide	Peter Woods	2	Plus library copy	PAW 4
Environment ACT	Daniel Walters	2		PAW 1
PPK Sydney	Greg Watkins	1		PAW 11

• to be initialled and dated by the PM on issue of the documents

	Schedule 2.2(a)(ii)	
Bound copy viewed & authorised for use		Signature)

Contents

οπο	N	umber
rage	IN	umper

Exec	utive Summary	v
1.	Introduction	1
	1.1 Site History and Previous Investigations	1
2.	Scope of Works	3
3.	Background Information	4
	3.1 Site Description	4
	3.2 Topography	4
	3.3 Local Soil and Groundwater	5
4.	Field Work	6
5.	Excavation Validation	7
6.	Validation Criteria	8
7.	Site Results and Discussion	10
	7.1 Field PID Readings	10
	7.2 Excavation Validation	10
	7.3 Excavated Material	10
	7.4 Imported Fill	10
8.	Quality Assurance/Quality Control	12
9.	Conclusions	13
10.	Statement of Limitations and Restrictions	14

List of Tables

Page Number

Table 3.1	Tank Inventory	4
Table 3.2	Generalised Stratigraphic Log	5
Table 6.1	Site Validation Criteria – Soils	9
Table 8.1	Data Validation	12

List of Figures

		Follows Page Number
Figure 1	Site Locality	1
Figure 2	UST Excavation and Sample Locations	4

Appendices

- Appendix A Tank Destruction Certificates
- Appendix B PPK Day Sheets
- Appendix C PPK Standard Procedures
- Appendix D Analytical Laboratory Results

. .

Glossary

ł

AST	Above ground storage tank.			
ANZECC	Australian & New Zealand Environment & Conservation Council.			
Apparent thickness	Apparent thickness is the thickness of PSH that can be measured in monitoring wells. The 'true' thickness of PSH on the groundwater is considerably less than the apparent thickness due to capillary forces in the soils. The ration of apparent to true varies with soil type from approximately equal in gravels to up 10 times the true thickness in clay soils.			
B[a]P	Benzo [a] Pyrene (a PAH compound).			
BTEX	Benzene, Toluene, Ethyl Benzene, Xylenes.			
C6-C9	Light hydrocarbon chain groups (for example, petrol).			
C10-C14	Medium hydrocarbon chain groups (for example, kerosene).			
C15-C28	Heavy hydrocarbon chain groups (for example, diesel).			
C29-C36	Heavy hydrocarbon chain groups (for example, lube oil).			
Eh	Redox potential measured in mV.			
EPA	Environment Protection Authority.			
KL	Kilolitre (1,000 litres).			
<1, <100	Less than the PQL, that is, less than 1 or 100 units.			
LEL	Lower explosion limit. The lower limit (of vapour and oxygen) that explosive vapours may occur for a particular compound (also see UEL).			
LOQ	Limit of quantitation (also see LOR or PQL) – of chemical concentrations attainable from laboratory analysis.			
LOR	Limit of Reporting.			
mg/kg	Milligram per kilogram (or part per million) – equal to.			
mg/L	Milligram per litre (or part per million).			
ND (nd)	Not detected above the LOQ or PQL.			
NHMRC	National Health & Medical Research Council.			
PAH	Polycyclic Aromatic Hydrocarbon.			
%RPD	Relative percent difference.			
PID	Photoionisation detector.			
ppb	Part per billion.			
ppm	Part per million.			
PQL	Practical Quantitation Limit (of chemical concentration).			
PSH	Phase Separated Hydrocarbons, liquid petroleum products usually detected on the groundwater table. Also know as Free Product or Separate Phase (also see apparent thickness).			
TDS	Total dissolved solids, a measure of salinity.			
ТРН	Total Petroleum Hydrocarbons.			
TRH	Total Recoverable Hydrocarbons.			
μg/L	Microgram per litre (or part per billion).			
μS/cm	MicroSiemens per centimetre a measure of conductivity and salinity.			
UCL	Upper confidence limit of data set.			
UEL	Upper explosion limit. The upper limit that explosive vapours may occur for a particular compound (also see LEL).			
UST	Underground Storage Tank.			
VHC	Volatile Halogenated Compound.			
VOC	Volatile Organic Compound.			

Executive Summary

In December 2001, PPK Environment & Infrastructure (PPK) was commissioned by Indec Consulting (Indec) to supervise the removal of three underground fuel storage tanks (USTs) and undertake soil validation sampling of the resulting excavation, at the land currently leased by William Edmunds at the Canberra Railway Yards, Kingston, ACT.

This report provides details of the UST removal and site validation works undertaken on 17 and 18 December 2001. Three USTs were located in a single tank pit with existing fuel infrastructure (bowser, pipework etc) in close proximity. The UST removal, associated excavation and UST destruction were completed by John F Taylor and Sons Pty Ltd.

The remaining tank pit area was then excavated to produce a clean void. The soil was stockpiled adjacent to the tank pit void and sampled for classification while the walls and base of the tank pit was sampled for validation. All samples were analysed for TPH, BTEX, PAHs and lead.

Sample results for both the excavation validation and stockpile material were determined to be less than the site validation criteria, thus the stockpile material was reinstated into the excavation. Additional fill material was imported to the site to make up the excavation void and comprised of "hardcore" gravel and sand/soil mix (top soil). The top soil was sampled and analysed; and both fill types were deemed suitable for use on site.

In summary, PPK concludes that the excavations and stockpiled soils have been appropriately validated. The criteria to which the area has been validated are the NSW EPA sensitive land use criteria specified in the NSW EPA Guidelines for Assessing Service Station Sites (1994). The results also meet the NEHF Residential "A" and Commercial/Industrial "F" Criteria found in the NSW EPA Guidelines for the NSW Site Auditor Scheme (1998). Therefore, this portion of the site is considered from an environmental and human health perspective to be suitable for either commercial/industrial or residential land use.

1. Introduction

In December 2001, PPK Environment & Infrastructure (PPK) was commissioned by Indec Consulting (Indec) to undertake supervision of the removal of three underground storage tanks (USTs) and associated infrastructure at Canberra Railway Yards (Block 2 Section 47 – Fyshwick) located off Newcastle Street, Kingston, ACT (*Figure 1*).

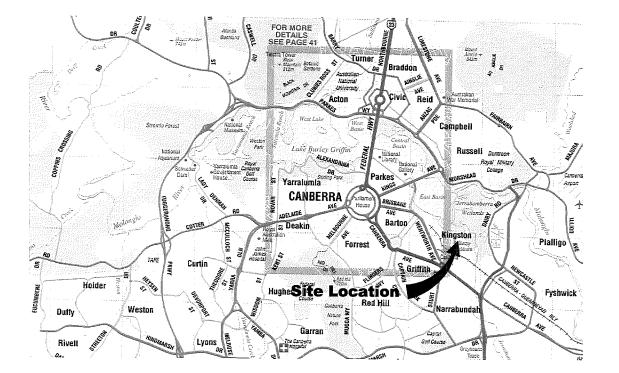
The USTs were used as part of a refuelling facility for railway vehicles and equipment located on the site. The USTs were located within a single tank pit with bowsers located adjacent.

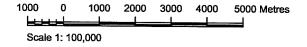
The objectives of the site works were to:

- remove the USTs and associated fuel related infrastructure;
- excavate tank pit backfill sands and stockpile;
- validate the walls and base of the tank pit excavation;
- assess the stockpiled material to determine either appropriate re-use or disposal options; and
- reinstate the area.

John F Taylor and Sons Pty Ltd (JFT) was the contractor appointed to complete the excavation of the USTs, their destruction and subsequent refurbishment of the site. JFT are appropriately qualified and licensed to undertake these works.

1.1 Site History and Previous Investigations


The Canberra Railway Yards have been extensively used for rail activity since the early 1900s and provided facilities for rail storage, maintenance and refuelling. The site also contained a landfill, which was predominantly used for the disposal of commercial and domestic refuse. These activities have resulted in numerous impacts to the soils and groundwater at the site.


A series of extensive environmental assessments were conducted on the site by PPK between 1998 and 2000, which resulted in a program of remediation. The investigations have included:

- Phase 1 Environmental Audit of the Australian National Facilities Canberra Railway Station Yards and Rail Corridor Report (PPK document number 98-182) in March 1998;
- Phase 2 Environmental Site Assessment Canberra Railway Station Yards and Rail Corridor (PPK document number 98-845) in November 1998;
- Phase 2B Further Soil and Groundwater Investigation, undertaken by PPK and reported in the PPK document Report on Further Soil and Groundwater Investigations Canberra Railway Station Yards and Rail Corridor' (PPK document number 99-0885-00) in December 1999; and

Client: Indec Consulting Project: UST Removal and Excavation Validation Location: Kingston, ACT

Site Locality

Figure 1

 Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor (PPK Document No. 01-0078-01 dated February 2001).

During the above investigations three USTs were discovered adjacent to an area of the site leased by William Edmunds for the storage of plumbing supplies. The removal of these USTs is the subject of this report.

2. Scope of Works

The scope of work undertaken for this project included:

- prepare a project safety plan (HASP) to identify all the foreseeable hazards associated with the site works and measures to be employed to reduce or remove the associated risks;
- excavate, remove and dispose of the three USTs and associated fuel dispensing infrastructure;
- excavate and stockpile backfill material from beneath the former bowser area and from within the tank pit;
- sample excavation walls and base and soil stockpile for validation and characterisation;
- analyse samples for Total Petroleum Hydrocarbons (TPH), Benzene, Toluene, Ethyl Benzene and Total Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs) and Lead;
- barricade the excavations in a secure manner for the duration of site works;
- implement all necessary environmental safeguards during the course of the works;
- reinstate the site to a safe condition; and
- produce a report detailing the results of the site works, validation sampling and conclusions.

3. Background Information

3.1 Site Description

The address of the property is Newcastle Street, Kingston, ACT, with the railway corridor extending to the east through Queanbeyan in New South Wales.

The site is located in a mixed residential, industrial and commercial area and is bounded by Newcastle Street and Mildura Street to the north and west of the site respectively. Some residential buildings are located adjacent to the site to the north. The Jerrabomberra Creek borders the site to the northeast, and commercial and light industrial premises border the site to the south. The Jerrabomberra Creek crosses the site to the southeast of the main railway station yards and flows north and northwest into Lake Burley Griffin.

The site is a rectangular shaped block, situated along the western side of a railway siding and is currently being leased from the Federal Government by William Edmunds for a plumbers workshop and store. The site consists of an elevated warehouse (elevated to allow for the movement of goods between the store and trains) and road way. The USTs are located in a grassy area to the north west of the warehouse. A schematic site layout is shown in *Figure 2*.

The known details of each tank are presented in *Table 3.1*, below.

	Tank Type	Nominal Capacity (Litres)	Product Stored	Approximate Age (Years)
1	Underground Storage Tank	5,000	Unknown	Unknown
2	Underground Storage Tank	10,000	Diesel	Unknown
3	Underground Storage Tank	10,000	Super	Unknown

Table 3.1Tank Inventory

3.2 Topography

The main railway station area and adjacent shunting yards have undergone substantial filling in the eastern part of the site and some cutting to the southwest of the rail lines. The entire area is reasonably flat, with elevations between approximately 560 and 564 m above Australian Height Datum (AHD). Along the north eastern boundary of the site (adjacent to the Jerrabomberra Creek silt trap), an embankment several metres high is present, created by the placement of fill in this area. The residential development to the north is several metres higher than the railway yards area, and the site slopes away from the residential area towards the south and east.

From where the rail line crosses the Jerrabomberra Creek, the ground level along the rail corridor rises steadily towards the south east from an elevation of approximately 560 mAHD adjacent the creek to approximately 580 mAHD at the Newcastle Street bridge.

Client: Indec Consulting Project: UST Removal and Excavation Validation Location: Kingston, ACT

A

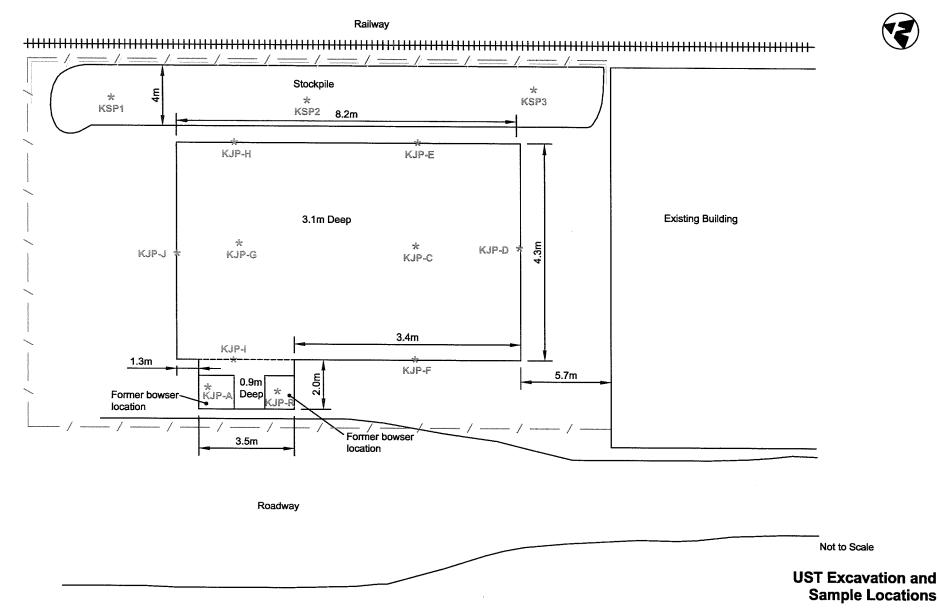


Figure 2

3.3 Local Soil and Groundwater

For a detailed discussion of the local soil profile, and the regional and local hydrogeology, please refer to the PPK report 'Phase II Environmental Site Assessment, Canberra Railway Station and Rail Corridor' (PPK Document No. 98-845) dated November 1998.

In general, the soil found on the site consisted predominately of a mixture of sedimentary rock (calcareous shale, limestone, sandstone and tuff) and alluvial soil deposits (gravel, sand, silt and clays associated with Jerrabomberra Creek).

Anecdotal information suggests that the local groundwater depth varies seasonally from 2 mBGL to 10 mBGL, but generally lies between 4 and 6 mBGL.

During the excavation and validation activities the geology was observed to consist of silty sand fill with fragments of glass, rock, concrete and the occasional car tyre to a depth of 2.0 mBGL. The natural material underlying the fill consisted of a dry red silty clay and extended to the limit of the investigation at 3.1 mBGL.

A generalised stratigraphic log is presented in Table 3.2.

Table 3.2 G	eneralised Stratigraph	ic Log
-------------	------------------------	--------

Average Depth (mBGL)	Lithology
0.0–2.0	Fill; silty sand, red – orange/brown, fine grained, dry, loose. Contained fragments of glass, concrete, rock, plastic and car tyres.
2.0–3.1 (Limit of Investigation)	Silty CLAY; Red /dark brown, low plasticity, MC < PL, firm, some organic matter.

Notes: mBGL = metres below ground level.

4. Field Work

Site demolition and validation works were undertaken on 17 and 18 December 2001. All site infrastructure including the USTs, pipe work and fuel dispensing facilities were removed from site and disposed of accordingly. The tank pit was excavated to a depth of 3.1 mBGL, and to 0.9 mBGL beneath the former bowser locations. No groundwater was encountered during excavation works. An inventory of underground storage tanks is presented in *Table 3.1*.

On completion of the removal of the USTs and associated infrastructure, the tanks were inspected and were found to be in good condition. The tank pit was cleaned and excavated backfill material stockpiled. The entire work area was secured with semipermanent steel mesh fence and the tank pit void was individually fenced with day glow mesh fencing. The appropriate warning signs were attached to the perimeter fence surrounding the site.

A copy of tank destruction certificates is presented in *Appendix A* and the relevant PPK Day Sheets are presented in *Appendix B*.

5. Excavation Validation

The soil validation samples were collected from the walls and base of the excavation to confirm that any potentially impacted material was removed. Material removed was stockpiled adjacent to the excavation. Approximately 75 m³ of excavated soil was stockpiled on-site. Validation of the stockpiled soil included collection and analysis of approximately one soil sample per 25 m³. The sample locations were spread evenly over the stockpile in order to characterise the material as a whole.

Soil validation samples were collected from the excavation and stockpile in duplicate. The primary sample was collected for chemical analysis, while the secondary sample was collected for a headspace analysis to determine soil vapour volatile organic compound (VOC) levels using a portable Photo Ionisation Detector (PID). Analysis of the headspace samples consisted of a snap-lock bag filled with the sampled soil to obtain a ratio of approximately 1:5 soil to air. The sample was then left to equilibrate. A small hole was made through the snap lock seal and the probe of the PID inserted. The VOC reading for the sample was recorded as a guide to likely soil impact. Calibration details for the PID are presented in the PPK field day sheets (*Appendix B*).

Samples were collected from at least 0.3 m depth to minimise any loss of volatiles, which would be expected from the surface soils. The extent of the excavation is shown in *Figure 2*.

All field sampling methods, labelling, transportation, storage and QA/QC procedures were in accordance with PPK's standard procedures which are presented in *Appendix C*.

Intra-laboratory and inter-laboratory samples were collected in the field at a ratio of at least 1:10 and 1:20 respectively.

Sampling containers were provided by the laboratory, Amdel, who also advised the type of sample container, sample preservation technique and holding time suitable for each analysis.

All samples retained for chemical analysis were stored in appropriately chilled secure insulated containers and transported to the laboratory certified by NATA for the required analyses (TPH, BTEX, PAHs and Lead). The integrity of the samples was assured by the use of "chain of custody" documentation that accompanied the samples from the time of collection until their receipt by the laboratory. PPK selected Amdel Pty Limited, Asquith NSW, as the primary laboratory, with Australian Laboratory Services Pty Ltd as the secondary check laboratory. Amdel and ALS meet in house compliances under the respective ISO 9001 quality assurance programs, are NATA certified and perform their own internal QA/QC programs. All analytical methods used by the laboratories conform (where required) to Schedule B(3) (NEPM, 1999). The laboratory certificates are presented in *Appendix A*.

6. Validation Criteria

To assess the significance of any contamination detected in the soil during the UST removal and tank pit validation of the former refuelling facility it is necessary to define the concentrations to be used for comparison.

The NSW EPA uses, as its primary evaluation criteria for land use, a combination of guidelines as follows:

Soil

- NSW EPA Guidelines for the NSW Site Auditor Scheme (NSW EPA, 1998).
- NSW EPA Guidelines for Assessing Service Station Sites (NSW EPA, 1994).

Environment ACT has adopted these guidelines for assessment of contaminated sites.

Each of the above criteria is discussed in further detail below.

Guidelines for the NSW Site Auditor Scheme

The NSW EPA have outlined soil investigation levels for use by site auditors undertaking site audits in NSW. These guidelines outline Health-Based Investigation Levels and Provisional Phytotoxicity-Based Investigation Levels (for sandy loams, pH 6-8).

Furthermore, the Health-Based Investigation Levels are outlined for four categories of development as follows:

- residential with gardens and accessible soil (home grown produce contributing less than 10 percent fruit and vegetable intake; no poultry), including children's day care centre, preschools and primary school, or town houses or villas;
- residential with minimal access to soil including high rise apartments and flats;
- parks, recreational open space, playing fields including secondary schools; and
- commercial or industrial.

NSW EPA Guidelines for Assessing Service Station Sites

Threshold concentrations for sensitive land uses are contained within the NSW EPA Guidelines for Assessing Service Station Sites (1994). These levels are for the redevelopment of former service station sites, however can be applied to other former land uses where hydrocarbons have been used. Some of the levels quoted in these guidelines are derived from work carried out by the Dutch Government, while others are based upon the ANZECC (1992) Investigation Levels.

Adopted Validation Criteria – Soils

PPK selected the "NSW EPA (1998) Guidelines for the NSW Site Auditor Scheme" NEHF F SIL4 Criteria (that is, Commercial/Industrial) and the NSW EPA (1994) Guidelines for Assessing Service Station Sites" as the primary validation criteria. Additionally consideration will also be given to the "NSW EPA (1998) Guidelines for the NSW Site Auditor Scheme" SIL5 (that is, provisional phytotoxicity based investigation level for sandy loams, pH 6–8).

The adopted Validation Criteria for soils are presented in Table 6.1.

Contaminant	Threshold Concentration for Soils (mg/kg)		
Heavy Metals:			
Lead	1,500 ¹	600 ²	
Total Petroleum Hydrocarbons:			
C6-C9	65 ³		
C10-C40	1,000 ³		
Monocyclic Aromatic Hydrocarbons:			
Benzene	1	3	
Toluene	1.	4 ³	
Ethyl benzene	3.	1 ³	
Total Xylenes	14	4 ³	
Polycyclic Aromatic Hydrocarbons:			
Total	10	01	
Benzo(a)pyrene	5	1	

Table 6.1 Site Validation Criteria – Soils

Notes:

1 NSW EPA (1998) Guidelines for the NSW Site Auditor Scheme – Commercial/Industrial (NEHF F).

2 NSW EPA (1998) Guidelines for the NSW Site Auditor Scheme – Provisional Phytotoxicity based investigation levels for sandy loams.

3 NSW EPA (1994) Guidelines for Assessing Service Station Sites.

Should additional material be required to fill voids in the excavation left by removal of the USTs, the material will be analysed for substances of concern as outlined in the NSW EPA (1994) Guidelines.

7. Site Results and Discussion

7.1 Field PID Readings

The PID readings for validation excavation and stockpile samples ranged from 1.2 to 6.9 ppm and 1.6 to 4.2 ppm respectively. All PID readings were found to be low, indicating that the soil had not been significantly impacted by photoionisable Volatile Organic Compounds (VOCs). All PID results are presented in *Table 7.1*.

7.2 Excavation Validation

A total of 10 validation samples were collected from the UST excavation and indicate the following:

- all validation samples collected and analysed contained concentrations of TPH, BTEX and PAHs which were either less than the laboratory quantifiable detection limit and/or less then the site validation criteria;
- lead concentrations ranged between 8 and 39 mg/kg. These concentrations are less than the validation criteria; and
- the chemical analysis results are presented in *Tables 7.1 and 7.2,* with copies of the NATA certified laboratory reports presented in *Appendix D*.

7.3 Excavated Material

Three stockpile samples were collected from material excavated in accordance with a 1:25 m³ ratio from a depth of 0.3 m. All stockpile samples reported TPH, BTEX, PAH and lead results less than the adopted site validation criteria. Given the results of the chemical analysis, this material was considered suitable for reinstatement of the void. The chemical analysis results are presented in *Tables 7.1 and 7.2* with copies of the NATA certified laboratory reports presented in *Appendix D*.

7.4 Imported Fill

To make up the void left in the excavation by the removal of the USTs, additional material was required to be imported to the site. This material comprised crushed igneous rock "hardcore" filling and sand/soil mix (top soil) supplied by Corkhill Bros. Sales Pty Ltd.

This material was visually free from contamination. However, to verify its suitability for use on site, one sample of the top soil was collected and submitted for chemical analysis for TPH/BTEX/PAHs, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and a suite of heavy metals. The chemical analysis results are presented in *Tables 7.3 and 7.4* with copies of the NATA certified laboratory reports presented in *Appendix D*.

The results of chemical analysis indicated concentrations of TPH/BTEX, PAHs, OCPs and PCBs less than the detection limit of the laboratory method used. Concentrations of heavy metals were either low or less than the detection limit of the laboratory method used. All concentrations reported were less than the site validation criteria, thus the material was considered suitable for use on site.

8. Quality Assurance/Quality Control

Field methods were consistent with PPK's Field Procedures. *Table 8.1* summarises the conformance of field and laboratory QA/QC with respect to data quality objectives.

Table 8.1	Data Validation	
-----------	-----------------	--

Data Quality Objective	Completed	Comments
Clean sample collected from centre of excavation bucket by hand.	Yes	Clean samples were taken from the excavator bucket taking care not to take material that has come in contact with bucket. A new set of Nitrile gloves were worn for each sample to prevent cross contamination.
Sample storage and analysis within recommended holding times and with correct preservative	Yes	All samples collected in the field were stored in an iced filled insulated container (esky).
All analyses NATA accredited	Yes	Laboratories used (AMDEL and ALS) hold NATA accreditation for the analyses undertaken.
Laboratory QA/QC acceptance criteria met for method blanks, laboratory duplicates, laboratory control samples, matrix spike samples and surrogate spike samples	Yes	Amdel and ALS laboratory QA/QC results comply with the QA/QC acceptance criteria of labs, which is part of their NATA registration.
Required number of blind duplicates (intra laboratory duplicates). Reported RPDs within acceptance limits.	Yes/No	Validation: blind duplicates for soil sampling: TPHs, BTEX, PAHs and lead. (Refer to text below for further explanation).
Required number of split samples (inter laboratory duplicates). Reported RPDs within acceptance limits.	Yes	Validation: blind duplicates for soil sampling: TPHs, BTEX, PAHs and lead.

The Relative Percentage Differences (RPDs) were calculated for the primary and duplicate intra and inter laboratory quality control samples to assess data quality. The RPD calculations are presented in *Table 8.2*, with the values obtained compared to acceptance criteria published in NEPM (1999) Schedule B(3) (RPD = < 30 percent).

No field quality control samples analysed contained concentrations of TPH/BTEX or PAHs greater then the laboratory PQL. As such no RPD could be calculated. Given that the concentrations were well below the site validation criteria, these quality control results are considered acceptable.

Slight RPD exceedances were calculated for lead in both the intra and inter laboratory duplicates. These variations in concentrations determined may have resulted from concentrations close to the laboratory PQL and the heterogenous nature of the material sampled. Although RPD exceedances have been reported, the concentrations of lead determine are well below the site validation criteria, thus elevated RPDs do not affect the data set. Therefore the data obtained from the laboratories is considered reliable and representative of the site conditions.

9. Conclusions

With respect to the UST removal and validation works, the following conclusions are made in relation to the potential land use at the site:

- three USTs and associated infrastructure have been removed from the site and disposed of in an appropriate manner. All USTs were observed to be in a good condition and certificates of destruction received;
- validation works have been performed in accordance with NSW EPA Guidelines for Assessing Service Station Sites (1994);
- all excavation validation samples analysed were determined to contain concentrations of the identified chemicals of concern below the adopted site criteria;
- all stockpile samples analysed were determined to contain concentrations of the identified chemicals of concern below the adopted site criteria. Thus, this material was considered suitable to reinstate the excavation; and
- fill material imported to make up the excavation void was determined to be suitable for use on the site.

In summary, PPK concludes that the excavation and the excavated soil stockpiled have been appropriately assessed and validated. The criteria to which the area has been validated is the NSW EPA sensitive land use criteria specified in the NSW EPA *Guidelines for Assessing Service Station Sites* (1994). The results also meet the NEHF Residential "A" and Commercial/Industrial "F" Criteria found in the NSW EPA *Guidelines for the NSW Site Auditor Scheme* (1998). Therefore, this portion of the site is considered to be suitable from an environmental and human health perspective for either commercial/industrial or residential land use.

10. Statement of Limitations and Restrictions

Scope of Services

This environmental site assessment report ("the report") has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the Client and PPK ("scope of services"). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

Reliance on Data

In preparing the report, PPK has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, PPK has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. PPK will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to PPK.

Environmental Conclusions

In accordance with the scope of services, PPK has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentration of contaminants, can change with time.

Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

Report for Benefit of Client

The report has been prepared for the benefit of the Client and no other party. PPK assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of PPK or for any loss or damage suffered by any other person of organisation arising expressed in the report. Other party relying upon the matters dealt with or conclusions expressed in the report. Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

Other Limitations

PPK will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

The scope of services did not include any assessment of the title to or ownership of the properties, buildings and structures referred to in the report nor the application or interpretation of laws in the jurisdiction in which those properties, buildings and structures are located.

Appendix A

Tank Destruction Certificates

John F. Taylor & Sons (NSW) Pty. Ltd. A.C.N. 003 600 440 John F. Taylor & Sons (Qid) Pty. Ltd. A.C.N. 071 332 119 John F. Taylor & Sons (Civil) Pty. Ltd. A.C.N. 002 467 594 Mitay Consulting Services Pty. Ltd. A.C.N. 082 721 971 JFT Petroleum Services Pty. Ltd. A.C.N. 081 974 622 JFT Environmental Services Pty. Ltd. A.C.N. 091 973 429

CERTIFICATE OF TANK DESTRUCTION

To: PPK ENVIRONMENT & INFRASTRUCTURE

of: 101 PIRIE STREET ADELAIDE SA 5001

Attention:

I hereby certify that the destruction of all tankage, as specified below, removed from:

FORMER COMMONWEALTH RAILWAY YARDS PART SECTION 47, NEWCASTLE STREET, FYSHWICK

was completed in full by close of business 24 December, 2001 The tanks were cut up in terms of all regulatory standards; Australian Standards 1940-1993 and AIP Code of Practice 22.

Total number of tanks recei	ved from site:	Three (3)	
	Size (litres)	Qty	
	5,000	1	
	10.000	2	
Schee	dule 2.2(a)	(ii)	
Signed:		Date: _23	.01.02
	k on behalf of ylor & Sons (NSW) Pty. L	_td.	

Sydney

26 Bosci Road., Ingleburn, NSW 2565 Phone: (02) 9618 0155 Fax: (02) 9618 0244 Email: Info-new@jtt.com.au Brisbane

1388 Kingsford Smith Drive, Meeandah, Qid. 4008 Phone: (07) 3260 1406 Fax: (07) 3260 1408 Email: Info-gid@jft.com.au Townsville

22 Carmel Street, Garbutt, Old. 4814 Phone: (07) 4779 7216 Fax: (07) 4728 1152 Email: Info-townsville@[ft.com.au

FILE No.467	18/02 '02 14:57 ID:JFT GROUP NSW	FAX:+612 9618	0244	PAGE 2
A.C.N. 008 467	HILL BROS. SALES PTY. LTD. 767 OROUGH ST., FYSHWICK, A.C.T.	A	H	
TELEPHOI FACSIMILE	OUALITY ASSURED COMPANY		23	DATE 102
	OGTAL ADDRESS: P.O. BOX 326 FYSHWICK, A.C.T 2609			VOICE
	- JOHN F. TATLOR	EIVED	· · · · · · · · · · · · · · · · · · ·	83506
			TAX INVC ABN: 44 008 467	787
			The total price in	ciudes GST
DATE	DESCRIPTION		RATE	AMOUNT
	ORDER NO: 110316	the second s		
	36 m HARD CORE FILLIN	<u> </u>		v ⁴
	10 m 5/3012			
	9 TON TIPPER HIRE 1140	Am -12.200	1.0	
	In In In	-2.0m	40mm	
	-TIPPING FEES 902949	······		
	DOCKET NO: 903949 DOCKET NO: 904040			
		·····		
	NELXASTLE ST KINGSTON Schedule 2.	2(a)(ii)		
	RAILWAT HISTOLICAL BOULT			
•				
GREE		entitieren schenkelt in die erstellen	OTAL.	
BLAC	GET COMPONENTS COPY			<u> </u>
5 - 1819-100-00	an a	. w . w . www.		

· · · ·

.

.

Appendix B

PPK Day Sheets

PPK Environment&Infrastructure

Day Field Sheet

Projec Job Nu		oval and Excavati 27L311E		-		I
Locatio		Commonwealth	•	s, Kingston, A	CT	
		st Grant Sainsb		1 = 0.0		
Time o			Time off site	1700		
Vehicl		Rental		avelled 400)	
Contra		JFT and Sons Pt	•		1720	
		te 1030				9 C
Weath	er	Sunr		ercast 🗌 Ra	in Temp 25	•ر •
Equipn	nent	Calib	orated (√)			
	PID # 2	61.8	result ppm to 1	03 ppm isobu	ıtylene equivalent	
	Esky with Ice/I	lce Bricks				
	Water Parame	eter Kit #		рН	Cond	Sal
	Calibrated to I				Cond	Sal
	Dip Meter	[Interfac	e Probe		
Reasor	n for site visit:					
	Groundwater/ Soil sampling	pervision pundwater well in Surface water sa	mpling		Environmental Au Emergency Respo	
Enviro	nmental Manag					
	ater Disposal:			PPE Disposal	: At PPK	
NOTES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Contractor Induct 3 Tanks (1 Diese Tanks inspected a Tank Pit sands ex Tank Pit Sampleo Approximately 7 Site fence erected KTP-J = QA1 and KSP-1 = QA2	el, 1 Unleaded, 1 Su and found to be in g (cavated d as per Figure 2 5m ³ of soil removed 1 and site secured	ood condition		Schedule	2.2(a)(ii)

PPK

Day Field Sheet

Project	UST Remo	val and Excava	ation Valida	tion, Kingsto	on, ACT	Date 18/12/01	
Job Numb	er	27L311E					
Location		Commonwea	th Railway	Yards, Kings	ston, ACT	Г	
Field Engi	neer/Scientis	st Grant Sains	bery				
Time on si	ite	0900	Time off	site	1100		
Vehicle ID)	Rental	kı	ns travelled	400		
Contracto	r	JFT and Sons	Pty Ltd				
Contracto	r time on sit	e 0900	Contracto	r time off si	te	1100	
Weather		Su	nny [] Overcast	🗌 Rain	Temp 24 ℃	-
Equipmen	t	Ca	librated (√)				
			result ppn	n to	ppm is	obutylene equivalent	
Esl	ky with Ice/I	ce Bricks			••	, ,	
	ater Paramet			1	pН	Cond	Sal
		ouffer value		pH		Cond	Sal
	Dip Meter		ln	erface Prob			
	r site visit:						
— Co	ntractor sup	ervision		Г		Environmental Audit	
_	cavation	ver vision				Emergency Response	
		undwater wel	installation	L		Emergency Response	
				1			
=		Surface water	sampring				
	il sampling						
	ental Manage						
Soil/Water Other:	r Disposal: N	N/A		PPE D	isposal: /	At PPK	
NOTES	uned site						
	cured site t up safety sign	S					
3. Pla	nt de-mobilisat	tion					
4. Cu	rb and guttering	g damaged when	excavator wa	s being loaded	d I	Schedule 2.2(a)	(ii)
				2	Signed		
		1. <u>1. 1</u> . 1. 1.		,			
10 00 00 00							Autor (11) 10 10 10 10 10 10 10 10 10 10 10 10 10

Appendix C

PPK Standard Procedures

Sampling and Analysis Methodologies

Soil/Fill Sampling Protocols

For all samples, care was taken to ensure that representative samples were obtained. Where possible, the samples maintained the integrity of the original medium from the point of collection to the point of analysis. The samples were collected and placed within an appropriate wide-mouth glass jar as described in the following paragraphs.

The decision on which sample to be analysed was based on soil vapour measurements taken in the field using a portable photo-ionisation detector (PID); on obvious indicators of impact such as discolouration, staining, unusual odours; and on technical considerations related to the interpreted attenuative capacity of certain soil layers (for example, just below or above a clay lens). If evidence of impact was noted within a soil/fill sample the sample was generally selected for analysis.

For chemical testing purposes all samples were prepared as detailed below:

- part of the selected area was placed immediately into a 125ml glass jar for laboratory analysis (if subsequently selected). The sample jar, which was provided by the laboratory, was completely filled. The jar was immediately placed in a cool box in which ice was had been added to keep the samples below a temperature of 4°C;
- a corresponding sample to that selected for possible laboratory analysis was placed into a 'glad' snap-lock plastic bag jar for Head Space Analysis testing. The bag was half filled with soil and sealed. Head Space Analysis testing comprised hand warming the sample (or leaving the sample in sunlight) for ten minutes with occasional agitation to maximise the release of VOCs into the bag. A PID probe was then inserted into the bag and the highest reading recorded. The PID was periodically calibrated; and
- the soil/fill was immediately logged.

All samples were classified in the field based on soil/fill characteristics and obvious signs of impact such as discolouration or odour noted. The samples selected for analysis were transported to the laboratory under Chain-of Custody procedures and maintained in an ice-filled cooler.

Chemical Analysis

All sample jars had screw caps and Teflon liners. Once filled, the caps were checked to ensure that they were secure (and that there were no head space in the relevant jars). All jars were labelled with sample number, project number, date obtained, and site name. This information was repeated on the chain-of-custody record form.

All samples were maintained in an ice filled cooler prior to and during transit to the laboratory. The samples were transported under chain-of-custody within insulated chests which contained coolant packs. 'This Side Up' and 'Fragile' labels were placed on the cooler. The lid of the cooler was taped shut. All samples arrived within 24 hours of being dispatched. The laboratory was contacted to ensure that the samples had arrived and to ascertain the status of the samples. All samples were analysed/extracted within the relevant holding times and analysed (where required) according to NEPC (1999) Schedule B(3).

Appendix D

Analytical Laboratory Results

This Laboratory is accredited by the National Association of Lesting Authonities, Australia. The lest(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full. NATA Accredited Laboratory Number: 1464

INDUSTRIAL SERVICES DIVISION

ABN 30 008 127 802

Correspondence to: PO Box 514 HORNSBY NSW 1630

CERTIFICATE OF ANALYSIS

5 Kelray Place ASQUITH NSW 2077 Telephone: (02) 9482 1922 Facsimile: (02) 9482 1734

Contents :

- 1. Cover Pages (2)
- 2. Analysis Report Pages
- 3. QA/QC Appendix
- 4. Additional Reports External (if applicable)
- 5. Chain of Custody (if applicable)

<u>Report No.</u>	:	1E3627			
Attention	:	Mr Greg Watkins			
<u>Client</u>	: : : :	PPK Sydney PO Box 248 CONCORD WEST NSW 2138			
Samples	:	15		Ŧ	
Reference/Order	:	27L311E/45541315			
Project	:	KINGSTON			
Received Samples	:	19/12/01	Instructions	:	19/12/01
Date Reported	:	27/12/01			

PLEASE SEE FOLLOWING PAGE FOR METHOD LISTING

RESULTS

All samples were analysed as received. This report relates specifically to the samples as received. Results relate to the source material only to the extent that the samples as supplied are truly representative of the sample source. This report replaces any preliminary results issued. Note that for methods indicated with "*", NATA accreditation does not cover the performance of this service. Three significant figures (or 2 for <10PQL) are reported for statistical purposes only. Where "Total" concentrations are reported for organic suites of compounds this is the summation of the individual compounds and the PQL is noted for reporting purposes only. This report has been auto-authorized by NATA signatories for PDF format. Refer to the method descriptions for further information.

PLEASE SEE ATTACHED PAGES FOR RESULTS

Schedule 2.2(a)(ii)

R. Mooney B.Sc. (Hons)Dip. FDA Technical Services Manager Sydney

Report No. : 1E3627

Please note: Where samples are collected/submitted over several days, the date on which the last samples were analysed or extracted is reported.

<u>Method</u>	Description	Extracted	<u>Analysed</u>	<u>Authorised</u>
E7500	Moisture (%w/w)	20/12/01	21/12/01	SYS 096
E1230	TPH C6-C9 by Purge & Trap	19/12/01	20/12/01	DUM 094
E1221	TPH (C10-C36)	20/12/01	21/12/01	DUM 094
E1010	Benzene,Toluene,Ethylbenzene & Xylene	19/12/01	20/12/01	DUM 094
E5910	Metals by ICP-AES	20/12/01	27/12/01	DGO 093
E1110	Polycyclic Aromatic Hydrocarbons	20/12/01	21/12/01	MNG 095

(6) amdel

Page 6 1 of plus Cover Page

	Lab No	E43133	E43134	E43135	E43136	E43137
Analyte	Sample Id	KJP-A	KJP-B	KJP-C	KJP-D	KJP-E
	PQL					
Moisture Content	1	29%	17%	18%	28%	19%
E1230 TPH in Soil by Purge & Trap/GO	-MS					
C6-C9 Fraction	5	nd	nd	nd	nd	nd
E1221 TPH in Soil						
C10-C14 Fraction	10	nd	40	nd	nd	nd
C15-C28 Fraction	50	nd	220	nd	nd	nd
C29-C36 Fraction	50	nd	nd	[·] nd	nd	nd
E1010 BTEX (P&T) in Soil						
Benzene	0.2	nd	nd	nd	nd	nd
Toluene	1	nd	nd	nd	nd	nd
Ethylbenzene	1	nd	nd	nd	nd	nd
Total Xylenes	3	nd	nd	nd	nd	nd
4-Bromofluorobenzene-SURROGATE	1	92%	96%	95%	91%	98%
E5910 Metals in Soil						
Lead	5	15	26	21	26	17

PQL = Practical Quantitation Limit

Soils

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

-- = Not Applicable

Refer to Amdel standard laboratory qualifier codes for comments.

(j) amdel

Page2 of6plus Cover Page

	Lab No	E43138	E43139	E43140	E43141	E43142
Analyte	Sample Id	KJP-F	KJP-G	КЈР-Н	KJP-I	KJP-J
	PQL					
Moisture Content	1	19%	14%	22%	16%	24%
E1230 TPH in Soil by Purge & Trap/GC	-MS					
C6-C9 Fraction	5	nd	nd	nd	nd	nd
E1221 TPH in Soil						
C10-C14 Fraction	10	nd	nd	nd	nd	nd
C15-C28 Fraction	50	nd	nd	nd	nd	nd
C29-C36 Fraction	50	nd	nd	nd	nd	nd
E1010 BTEX (P&T) in Soil						
Benzene	0.2	nd	nd	nd	nd	nd
Toluene	1	nd	nd	nd	nd	nd
Ethylbenzene	1	nd	nd	nd	nd	nd
Total Xylenes	3	nd	nd	nd	nd	nd
4-Bromofluorobenzene-SURROGATE	1	98%	102%	95%	92%	97%
E5910 Metals in Soil						
Lead	5	17	13	8	9	8
· · · · · · · · · · · · · · · · · · ·						

PQL = Practical Quantitation Limit

LNR = Samples Listed not Received

Soils Water

 $nd = \langle PQL \rangle$

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

-- = Not Applicable

Refer to Amdel standard laboratory qualifier codes for comments.

6 Page 3 of plus Cover Page

	Lab No	E43143	E43144	E43145	E43146	E43147
Analyte	Sample Id	KSP 1	KSP 2	KSP 3	1712QA1	1712QA2
	PQL					•
Moisture Content	1	20%	26%	15%	22%	26%
E1230 TPH in Soil by Purge & Trap/GC	-MS					
C6-C9 Fraction	5	nd	nd	nd	nd	nd
E1221 TPH in Soil						
C10-C14 Fraction	10	nd	nd	nd	nd	nd
C15-C28 Fraction	50	nd	nd	nd	nd	nd
C29-C36 Fraction	50	nd	nd	nd	nd	nd
E1010 BTEX (P&T) in Soil						
Benzene	0.2	nd	nd	nd	nd	nd
Toluene	1	nd	nd	nd	nd	nd
Ethylbenzene	1	nd	nd	nd	nd	nd
Total Xylenes	3	nd	nd	nd	nd	nd
4-Bromofluorobenzene-SURROGATE	1	94%	95%	96%	96%	92%
E5910 Metals in Soil						
Lead	5	22	30	39	11	17
			l			J

PQL = Practical Quantitation Limit

LNR = Samples Listed not Received

Soils

Leachates

Waters

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header : mg/L (ppm) in leachate unless otherwise specified in

-- = Not Applicable

 $nd = \langle PQL \rangle$

Refer to Amdel standard laboratory qualifier codes for comments.

Method Header

(j) amdel

Page4 of6plusCoverPage

	Lab No	E43133	E43134	E43135	E43136	E43137
Analyte	Sample Id	KJP-A	KJP-B	КЈР-С	KJP-D	KJP-E
	PQL				-	
E1110 Priority PAH's in Soil						
Naphthalene	0.5	nd	nd	nd	nd	nd
Acenaphthylene	0.5	nd	nd	nd	nd	nd
Acenaphthene	0.5	nd	nd	nd	nd	nd
Fluorene	0.5	nd	nd	nd	nd	nd
Phenanthrene	0.5	nd	nd	nd	nd	nd
Anthracene	0.5	nd	nd	nd	nd	nd
Fluoranthene	0.5	nd	nd	nd	nd	nd
Pyrene	0.5	nd	nd	nd	nd	nd
Benz(a)anthracene	0.5	nd	nd	nd	nđ	nd
Chrysene	0.5	nd	nd	nd	nd	nd
Benzo(b) & (k)fluoranthene	1	nd	nd	nd	nd	nd
Benzo(a)pyrene	0.5	nd	nd	nd	nd	nd
Indeno(1.2.3-cd)pyrene	0.5	nd	nd	nd	nd	nd
Dibenz(a.h)anthracene	0.5	nd	nd	nd	nd	nd
Benzo(g.h.i)perylene	0.5	nd	nd	nd	nd	nd
Total USEPA Priority PAHs	0.5	nd	nd	nd	nd	nd
2-Fluorobiphenyl-SURROGATE	1	109%	103%	98 %	97%	100%
Anthracene-d10-SURROGATE	1	107%	94%	94%	101%	103%
p-Terphenyl-D14-SURROGATE	1	118%	106%	106%	111%	114%
•						

PQL = Practical Quantitation Limit

LNR = Samples Listed not Received

Soils Waters

Leachates

 $nd = \langle PQL \rangle$

-- = Not Applicable

Refer to Amdel standard laboratory qualifier codes for comments.

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

(j) amdel

6 Page 5 of plus Cover Page

	Lab No	E43138	E43139	E43140	E43141	E43142
Analyte	Sample Id	KJP-F	KJP-G	KJP-H	KJP-I	KJP-J
	PQL					
E1110 Priority PAH's in Soil						
Naphthalene	0.5	nd	nd	nd	nd	nd
Acenaphthylene	0.5	nd	nd	nd	nd	nd
Acenaphthene	0.5	nd	nd	nd	nd	nd
Fluorene	0.5	nd	nd	nd	nd	nd
Phenanthrene	0.5	nd	nd	nd	nd	nd
Anthracene	0.5	nd	nd	nd	nd	nd
Fluoranthene	0.5	nd	nd	nd	nd	nd
Pyrene	0.5	nd	nd	nd	nd	nd
Benz(a)anthracene	0.5	nd	nd	nd	nd	nd
Chrysene	0.5	nd	nd	nd	nd	nd
Benzo(b) & (k)fluoranthene	1	nd	nd	nd	nd	nd
Benzo(a)pyrene	0.5	nd	nd	nd	nd	nd
Indeno(1.2.3-cd)pyrene	0.5	nd	nd	nd	nd	nd
Dibenz(a.h)anthracene	0.5	nd	nd	nd	nd	nd
Benzo(g.h.i)perylene	0.5	nd	nd	nd	nd	nd
Total USEPA Priority PAHs	0.5	nd	nd	nd	nd	nd
2-Fluorobiphenyl-SURROGATE	1	98%	93%	96%	97%	98%
Anthracene-d10-SURROGATE	1	98%	95%	100%	100%	96%
p-Terphenyl-D14-SURROGATE	1	108%	104%	109%	109%	107%

PQL = Practical Quantitation Limit

LNR = Samples Listed not Received

Soils

 $nd = \langle PQL \rangle$

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

-- = Not Applicable

Refer to Amdel standard laboratory qualifier codes for comments.

Page 6 of 6 plus Cover Page

	Lab No	E43143	E43144	E43145	E43146	E43147
Analyte	Sample Id	KSP 1	KSP 2	KSP 3	1712QA1	1712QA2
	PQL					.a
E1110 Priority PAH's in Soil						an anna an ^a n 1969 an 1971 an
Naphthalene	0.5	nd	nd	nd	nd	nđ
Acenaphthylene	0.5	nd	nd	nd	nd	nd
Acenaphthene	0.5	nd	nd	nd	nd	nd
Fluorene	0.5	nd	nd	nd	nd	nd
Phenanthrene	0.5	nd	nd	nd	nd	nd
Anthracene	0.5	nd	nd	nd	nd	nd
Fluoranthene	0.5	nd	nd	nd	nd	nd
Pyrene	0.5	nd	nd	nd	nd	nd
Benz(a)anthracene	0.5	nd	nd	nd	nd	nd
Chrysene	0.5	nd	nd	nd	nd	nd
Benzo(b) & (k)fluoranthene	1	nd	nd	nd	nd	nd
Benzo(a)pyrene	0.5	nd	nd	nd	nd	nd
Indeno(1.2.3-cd)pyrene	0.5	nd	nd	nd	nd	nd
Dibenz(a.h)anthracene	0.5	nd	nd	nd	nd	nd
Benzo(g.h.i)perylene	0.5	nd	nđ	nd	nd	nd
Total USEPA Priority PAHs	0.5	nd	nd	nd	nd	nd
2-Fluorobiphenyl-SURROGATE	1	99%	97%	100%	97 %	97%
Anthracene-d10-SURROGATE	1	99%	95%	98%	100%	95%
p-Terphenyl-D14-SURROGATE	1	108%	106%	110%	110%	105%
· · ·						
·						

PQL = Practical Quantitation Limit

LNR = Samples Listed not Received

Soils Waters

Leachates

nd = < PQL

-- = Not Applicable

Refer to Amdel standard laboratory qualifier codes for comments.

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

CHAIN-OF-CUSTODY

Kingston Tank Pull

Page 2 of 3

Address:								301	No.				8	Results Exp	ected By/OI	n:	27-Dec-01
loaress:		5 Kelray Place		1		(0	uote	on al	I corr	espo	ndenc	e)		Fax Results			Greg Watkins
		Asquith												Fax Number:			9736 1568
ax Number:		02 9482 1734					27L	311	E				1	Phone Numb	er:		9743 0333
hone Number:		02 9482 1922		1			38 10		999 F 795					2			
Contact Name:		Andrew Spencer (Sy	dney)	1 (1000.000			Invoice To:	Greg Watkin	s	
									£	Anal	sis R	equire	ed			ana tanan sa sa sa	
					Vedium *	Preservative Type	filtered (x)	Vo. of Containers	TPH/BTEX	PAH	OCP/OPP/PCB	Metals	Lead				
Date Sampled	Time	Samp	le I.D	Vol	2	<u>a</u>	<u> </u>	~	E	<u>_</u>	- 9	2		Sampled By	Company	Signature	Remarks
	1	Location	Depth (m)	1										(Company	olg/latere	
17/12/2001	8	KJP-A	43,33	125 mL	s	ice		1	X	Х	1		X	GS	PPK		
17/12/2001		KJP - B	3.7	125mL	5	ice		1	X	х			X	GS	PPK		
17/12/2001		KJP - C	35	125mL	s	ice		1	X	X			X	GS	PPK		10 MG 2
17/12/2001		KJP - D	56	125mL	s	ice		1	X	X			X	GS	PPK		
17/12/2001		KJP-E	37	125mL	s	ice		1	X	X			X	GS	PPK		÷ ș üri
17/12/2001		KJP - F	38	125mL	s	ice		1	х	X			X	GS	PPK		
17/12/2001		KJP - G	39	125mL	s	ice		1	X	Х			X	GS	PPK	1	
17/12/2001		KJP-H	20	125mL	s	ice		1	X	X			X	GS	PPK		TESU
17/12/2001		KJP - I	#1	125mL	s	ice		1	X	X			XL	GS	PPK		
17/12/2001		KJP - J	43	125mL	s	ice		1	X	X			X	GS	PPK		
17/12/2001	8	KSP 1	45	125mL	s	ice		1	X	X			X	GS	РРК		
17/12/2001		KSP 2	14	125mL	s	ice		1	X	X			X	GS	PPK		
17/12/2001		KSP 3	45	125mL	s	ice		1	X	X		9	X	GS	PPK		
17/12/2001		1712 QA1	46	125mL	s	ice		1	X	X			X	GS	PPK		
17/12/2001		1712 QA2	47	125mL	5	ice		1	X	X		8	X	GS	PPK		
					-											1	
										1		-9-71.z					
							1	and.									
					[
																	· · · · · · · · · · · · · · · · · · ·
•															and a second		
) - extended and the second and the
															<u></u>		
Relinquished By (Nar	me):	G.Sainsbery	Received By (Na	me):	K	. 69					hed B	y (Na	me):		Received By	(Name):	
Date:		19/12/2001	Date:	11 11 12		19%			Date				_		Date:		
Company: On Behalf Of:		Schedule 2 2(a)(ii	Company: On Behalf Of:		-	Im	del			Behal					Company:		
Signature:		<u>+-</u>	Signature:		- 2	cheduk		a)(0)		ature					On Behalf O Signature:	n:	

PPK

9 Blaxland Road, Rhodes NSW 2138

Environmental and Geotechnical Services

Comments: Metals include As, Cd, Cr, Cu, Ni, Pb, Zn, Hg

* Legend: S = Soil, W = Water, F = Filter

Analysis to be billed direct to Mobil. Refer to above purchase order no. T = Tube

<u>ø</u>amdel

<u>AMDEL INTERNAL QUALITY ASSURANCE REVIEW.</u>

Job No. 2E0320

General

- 1. Laboratory QA/QC including Method Blanks, Duplicates, Matrix Spikes, Laboratory Control Samples or CRM's are included in this QA/QC appendix. (Where applicable)
- 2. Inter-Laboratory proficiency trial results are available upon request.
- 3. POLs are matrix dependent and are increased accordingly where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spike or surrogate recoveries.
- 5. Where 3 and 2 significant figures are reported for >10x PQL and <10x PQL respectively, the last figure is uncertain and is provided for statistical purposes only.
- 6. Samples duplicated or spiked are from this job only and are identified in the following QA/QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered samples, unless noted otherwise.

Maximum Holding Times for Soils, Sediments and Waters

Parameter

<u>Soils</u>

Volatile and Semi-Volatile Organic Analysis. Metals Inorganics* TCLPs*

Waters

Volatile Organic Analysis Semi-Volatile Organic Analysis Inorganics* Metals (dissolved metals should be supplied field filtered)

Chain of Custody and Sample Integrity

Extracted in 14 days, analysed within 40 days. Extracted and analysed within 28 days-6 months. Extracted and analysed within 7-28 days.

Extracted and analysed within 14 days, (Zero Headspace-TCLP 7 days).

Holding Times

Analysed within 7 days (USEPA requires 14 days). Extracted in 7 days, analysed within 40 days. Analysed within 24 hrs-28 days. Prepared and analysed within 28 days.

* Please refer to 'Preservation Information Chart for Soils, Sediments & Waters' for further information. (ISFORM.098). Holding times may be extended with the use of preservation bottles and/or freezing samples. Holding times can be calculated from dates reported in the body of the report. Tests clearly exceeding holding times will be noted when sufficient information is provided.

Reference: USEPA SW846 and AMDEL SPM-01 (incorporating NEPM Guidelines).

Chain of Custody and Sample Integrity	<u>Yes/No/NA</u>
Chain of Custody / instructions received with samples	Yes
Custody seals were received intact, if used	NA
Samples were received chilled and in good condition	Yes
Samples received appropriately preserved for all tests	Yes
VOC/SVOC samples were received in teflon lined containers	Yes
Samples received with Zero Headspace	Yes
Chain of Custody completed and attached (if applicable)	Yes
Chromatography Calibration/Acceptence Criteria (if applicable)	

Retention time window meets acceptance criteria (+/-2%)	Yes
Reference standard meets acceptance criteria (+/-10%)	Yes
Recalibration standard meets acceptance criteria (+/-15%)	Yes
Internal standard recovery acceptable.	Yes

Page 1

AMDEL INTERNAL QUALIT	ΓΥ ASSURANCE REVIEW Cont	Page 2
Amdel QA/QC Compliance Assessm	ent	<u>Compliance</u>
Surrogates performed on all appropri acceptance limits (70% - 130% recov		Please see body of report
Matrix Spikes performed once per pr 1 in 20 samples (Results meet accepta recovery* or 80% - 120% recovery*	ance limits - 70% - 130%	Please see body of report
Laboratory Control samples performe and at least 1 in 20 samples (Results : - 70% - 130% recovery* in soil or 70		Yes
Laboratory Duplicate samples perform and at least 1 in 10 samples	med once per process batch	NA
Laboratory duplicates meet acceptance <4 PQL - +/- 2 PQ 4-10 PQL - 0-25 or 50 >10 PQL - 0-10 or 30	L % RPD	Please see body of report
Method Blanks performed once per p 1 in 20 samples (Results not detected		Yes
N/A=Not Applicable.	* Phenols 50% - 130% recovery * SVOCs 60% - 130% recovery * Phenoxy Acid Herbicides 60% - 140% recovery	
QA/QC Appendix	Thenoxy Field Herbicides 0070 - 14070 Feedvery	
Please refer to the following pages for For further information on samples or notations in the body of the report plu	non-conformance in QC protocols please see	

. .

Additional Comments

		£	1.1.1	10.00
Scl	hedu	ile 7))(a	Δ (ii)
1001	ieuu		∠(0	ЛПЛ

<u>R. Mooney B.Sc.(Hons) Dip. FDA</u> <u>Technical Services Manager Sydney</u>

AMDEL STANDARD LABORATORY QUALIFIER CODES.

Job NO. 2E0320

General

Qualifier Codes	Description
*	PQLs are raised due to matrix interference.
@	PQLs are raised due to the insufficient sample.
\$	The mass imbalance indicates the presence of other ions not measured as part of this procedure.
&	Surrogate recoveries could not be determined due to the dilution required to quantify the analyte.
IS	Insufficient sample was supplied to conduct this analysis.
nd	<pql< th=""></pql<>
	Not applicable
LNR	Sample listed on the COC, but not received.
J	The analyte was positively identified; the associated numerial value is the approximate concentration of the analyte in the sample.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a 'tentative' identification.
NJ	The analysis indicates the presences of an analyte that has been 'tentatively' identified, and the
	associated numerical value represents it's approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported
	quantitation limit is approximate and may not represent the actual limit of quantitation necessary
	to accurately and precisely measure the analyte in the sample.
R	The presence or absence of the analye cannot be verified.
#	The matrix spike concentration is significantly less than the sample analyte concentration, thus spike recovery can not be accurately determined.
**	The surrogate recovery is outside of the recommended acceptance criteria, due to matrix interference.
***	The surrogate recovery is outside of the recommended acceptance criteria. Insufficent sample to perform confirmation.
А	The spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.
В	The duplicate % RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity.
С	The sample was not received in a suitable timeframe to allow completion within the recommended holding time.
0	The results reported are 'recoverable organics' for this fraction, as the chromatogram and peak shape indicates the presence of a significant concentration of polar compounds.
Р	The concentration reported is mainly due to a single peak.
ISM	Insufficient sample was supplied to conduct matrix spike analysis.
ISD	Insufficient sample was supplied to conduct duplicate analysis.
М	The sample was received with the incorrect preservation for this analysis.
S	The sample contained significant amounts of sediment. Sample aliquots have been taken via decanting in an attempt to avoid including sediment in the analysis portion.
К	The raw data indicates the absence of 0.055g of Copper Sulphate in the sample.
L	Theoretically the TKN result should be greater or equal to ammonia concentration. However the difference reported is within the uncertainty of the individual tests.
D	Theoretically the total result should be greater or equal to the dissolved concentration. However the difference reported is within the uncertainty of the individual tests.
I ·	During Kjeldahl digestion, nitrate (>10mg/L) can oxidise ammonia resulting in a negative TKN interference.
E	The mass imbalance was equal to or less than 0.2 milli-equivalents.
F	Samples results are reported on an 'as received' basis.
Н	This sample was received with headspace (see first analyte notation).
T	This test was performed outside the recommended holding time
G	Samples contain volatile halogenated oxygenated or other compounds that are not quantitated as part of C6-9.
J	Results expressed in mg/L (ppm) due to the high concentration of the analyte.

Page 3

Page 1 of 8

~· ·

QAQC : Laboratory Control Sample(s)

		Level Detected			Recovery Details		
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E1230 TPH in Soil by Purge & Trap/C	C-MS						
C6-C9 Fraction	100	91			91%		
E1221 TPH in Soil							
C10-C14 Fraction							
C15-C28 Fraction	550	520			94%		
C29-C36 Fraction					-		
E1010 BTEX (P&T) in Soil							
Benzene	10	9.2			91%		
Toluene	10	9			94%		
Ethylbenzene	10	9			94%		
m&p-Xylene	20	19			97%		
o-Xylene	10	10			95%		
		1					
· · · · ·							

PQL = Practical Quantitation Limit -- = Not Applicable nd = <PQL

(g) amdel

Job Number : 2E0320

Page 2 of 8

....

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E1230 TPH in Soil by Purge & Tra	p/GC-MS					د.
C6-C9 Fraction	5	nd			1 1947 418 A. B	
E1221 TPH in Soil						
C10-C14 Fraction	10	nd				w.
C15-C28 Fraction	50	nd				
C29-C36 Fraction	50	nd				<u></u>
E1010 BTEX (P&T) in Soil				•		
Benzene	0.2	nd				
Toluene	1	nd				
Ethylbenzene	1	nd				
m&p-Xylene	2	nd				
o-Xylene	1	nd				
					21.1	
					•0 ⁻¹	
					. **	

PQL = Practical Quantitation Limit nd = <PQL -- = Not Applicable

Page 3 of 8

QAQC : Laboratory Control Sample(s)

Analyte		Level Detected			Recovery Details		
	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E1110 Priority PAH's in Soil							
Naphthalene	5	5.2			104%		
Acenaphthylene	5	5.4			108%		
Acenaphthene	5	5.2			102%		
Fluorene	5	5.2			102%		
Phenanthrene	5	5.2			102%		-
Anthracene	5	5.0			98%		
Fluoranthene	5	5.0			100%		
Pyrene	5	5.0			100%		
Benz(a)anthracene	5	5.0			100%		
Chrysene	5	5.0			98%		
Benzo(b) & (k)fluoranthene	10	10			100%		
Benzo(a)pyrene	5	5.0			100%		
Indeno(1.2.3-cd)pyrene	5	5.2			102%		
Dibenz(a.h)anthracene	5	5.4			108%		
Benzo(g.h.i)perylene	5	5.4			106%		

....

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E1110 Priority PAH's in Soil						J
Naphthalene	0.5	nd				
Acenaphthylene	0.5	nd				
Acenaphthene	0.5	nd				
Fluorene	0.5	nd				
Phenanthrene	0.5	nd				
Anthracene	0.5	nd				.****
Fluoranthene	0.5	nd				
Pyrene	0.5	nd				
Benz(a)anthracene	0.5	nd				
Chrysene	0.5	nd				
Benzo(b) & (k)fluoranthene	1	nd				
Benzo(a)pyrene	0.5	nd				
Indeno(1.2.3-cd)pyrene	0.5	nd				
Dibenz(a.h)anthracene	0.5	nd				
Benzo(g.h.i)perylene	0.5	nd				
					-	
					<i>v</i> _	

PQL = Practical Quantitation Limit nd = <PQL -- = Not Applicable

Page 8 5 of

~ •

QAQC : Laboratory Control Sample(s)

		Leve	1 Detecte	ed	Recovery Details		
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E1081 OC's & Total PCB's in Soil							-
НСВ	0.5	0.5			94%		··
a-BHC	0.5	0.5		amer to	91%		
g-BHC	0.5	0.5			92%		
Heptachlor	0.5	0.5			93%		
Aldrin	0.5	0.5			93%		
ь-внс	0.5	0.5			94%		
d-BHC	0.5	0.4			80%		
Oxychlordane	0.5	0.5			93%		
Heptachlor epoxide	0.5	0.5			93%		
Endosulfan 1	0.5	0.5			92%		
Chlordane-Trans	0.5	0.5			93%		
Chlordane-Cis	0.5	0.5			93%		
trans-Nonachlor	0.5	0.5			93%		
DDE	1.0	1.0			93%		
Dieldrin	0.5	0.5			92%		
Endrin	0.5	0.5			92%		
DDD	1	1.0			93%		
Endosulfan 2	0.5	0.5			92%		
DDT	1.0	1.0			95%		
Endosulfan sulfate	0.5	0.5			92%		
Methoxychlor	0.5	0.5			94%		
Total Polychlorinated biphenyl	-						

Page 6 of 8

·· ·

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E1081 OC's & Total PCB's in Soil						
НСВ	0.1	nd		•		
a-BHC	0.1	nd				
g-BHC	0.1	nd				
Heptachlor	0.1	nd				
Aldrin	0.1	nd				
b-BHC	0.1	nd				
d-BHC	0.1	nd				
Oxychlordane	0.1	nd				
Heptachlor epoxide	0.1	nd				
Endosulfan 1	0.1	nd				
Chlordane-Trans	0.1	nđ				
Chlordane-Cis	0.1	nd				
trans-Nonachlor	0.1	nd				
DDE	0.1	nd				
Dieldrin	0.1	nd				
Endrin	0.1	nd			·	
DDD	0.1	nd				
Endosulfan 2	0.1	nd				
DDT	0.1	nd				
Endosulfan sulfate	0.1	nd				
Methoxychlor	0.1	nd				
Total Polychlorinated biphenyl	1	nd				

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

Page 7 of 8

...

QAQC : Laboratory Control Sample(s)

Analyte		Level Detected			Recovery Details		
	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E5910 Metals in Soil							J
Arsenic	50	51			103%		-
Cadmium	50	49			98 %		
Chromium	50	52			103%		
Copper	50	53			107%		
Nickel	50	49			99 %		
Lead	50	49			97%		_
Zinc	50	50			100%		
E5950 Mercury in Soil					-		
Mercury	0.50	0.50			100%		
						-	
					i		
1- M							_

(S) Soils : mg/kg (ppm) dry weight (W) Waters : mg/L (ppm) unless otherwise specified

•

Øamdel

8 Page 8 of

- -

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E5910 Metals in Soil						
Arsenic	5	nd				
Cadmium	0.5	nd				
Chromium	5	nd				
Copper	5	nd				
Nickel	2	nd				
Lead	5	nd				
Zinc	5	nd				
E5950 Mercury in Soil						
Mercury	0.05	nd				
					•-	
					~1	

= Practical Quantitation Limit = <PQL = Not Applicable PQL nd

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full. NATA Accredited Laboratory Number: 1464

INDUSTRIAL SERVICES DIVISION

ABN 30 008 127 802

Correspondence to: PO Box 514 HORNSBY NSW 1630

CERTIFICATE OF ANALYSIS

5 Kelray Place ASQUITH NSW 2077 Telephone: (02) 9482 1922 Facsimile: (02) 9482 1734

Contents :

- 1. Cover Pages (2)
- 2. Analysis Report Pages
- 3. QA/QC Appendix
- 4. Additional Reports External (if applicable)
- 5. Chain of Custody (if applicable)

Report No.	:	2E0320			
Attention	:	Mr Greg Watkins			
<u>Client</u>	•	PPK Sydney PO Box 248 CONCORD WEST NSW 2138			
<u>Samples</u>	:	1			
Reference/Order	:	27L311E			
<u>Project</u>	:	27L311E			
Received Samples	:	05/02/02	Instructions	:	05/02/02
Date Reported	:	11/02/02			

PLEASE SEE FOLLOWING PAGE FOR METHOD LISTING

RESULTS

All samples were analysed as received. This report relates specifically to the samples as received. Results relate to the source material only to the extent that the samples as supplied are truly representative of the sample source. This report replaces any preliminary results issued. Note that for methods indicated with "*", NATA accreditation does not cover the performance of this service. Three significant figures (or 2 for <10PQL) are reported for statistical purposes only. Where "Total" concentrations are reported for organic suites of compounds this is the summation of the individual compounds and the PQL is noted for reporting purposes only. This report has been auto-authorized by NATA signatories for PDF format. Refer to the method descriptions for further information.

PLEASE SEE ATTACHED PAGES FOR RESULTS

Schedule 2.2(a)(ii)

R. Mooney B.Sc. (Hons)Dip. FDA Technical Services Manager Sydney

Report No. 2E0320 :

Please note: Where samples are collected/submitted over several days, the date on which the last samples were analysed or extracted is reported. Unless Ferrous Iron is determined on site, the possibility of a ferrous-ferric ratio change may

. .

occur.

E1230 TPH C6-C9 by Purge & Trap 05/02/02 06/02/02 DUM E1221 TPH (C10-C36) 05/02/02 06/02/02 DUM E1010 Benzene, Toluene, Ethylbenzene & Xylene 05/02/02 06/02/02 DUM E1110 Polycyclic Aromatic Hydrocarbons 05/02/02 06/02/02 DUM E1081 Organochlorine Pesticides and PCBs 05/02/02 06/02/02 MNG	Method	Description	Extracted	<u>Analysed</u>	<u>Authorised</u>
	E7500 E1230 E1221 E1010 E1110 E1081 E5910	Moisture (%w/w) TPH C6-C9 by Purge & Trap TPH (C10-C36) Benzene, Toluene, Ethylbenzene & Xylene Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides and PCBs Metals by ICP-AES	06/02/02 05/02/02 05/02/02 05/02/02 05/02/02 05/02/02 06/02/02	07/02/02 06/02/02 06/02/02 06/02/02 06/02/02 06/02/02 11/02/02	DUM 094 DUM 094 DUM 094 MNG 095 MNG 095 DGO 093

Page1 of4plusCoverPage

		1				
	Lab No	E47948				
Analyte	Sample Id	SP1				
	PQL					-
	1	8%				
Moisture Content		070				
E1230 TPH in Soil by Purge & Trap/GC						
C6-C9 Fraction	5	nd				
E1221 TPH in Soil						
C10-C14 Fraction	10	nd		-		
C15-C28 Fraction	50	nd			-	
C29-C36 Fraction	50	nd				
E1010 BTEX (P&T) in Soil						
		nd				
Benzene	0.2					
Toluene	1	nd				
Ethylbenzene	1	nd				
m&p-Xylene	2	nd				
o-Xylene	1	nd				
4-Bromofluorobenzene-SURROGATE	1	99%				
			· • • 6.78			

PQL = Practical Quantitation Limit

.

utation Linne

Soils

LNR = Samples Listed not Received

Waters

Leachates

ed

VV ALCI

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

-- = Not Applicable

 $nd = \langle PQL \rangle$

Refer to Amdel standard laboratory qualifier codes for comments.

Page 2 of 4 plus Cover Page

	Lab No	E47948			
Analyte	Sample Id	SP1			
	PQL				
E1110 Priority PAH's in Soil					
Naphthalene	0.5	nd			
Acenaphthylene	0.5	nd			
Acenaphthene	0.5	nd			
Fluorene	0.5	nd			
Phenanthrene	0.5	nd			
Anthracene	0.5	nđ			
Fluoranthene	0.5	nd			
Pyrene	0.5	nd			
Benz(a)anthracene	0.5	nd			
Chrysene	0.5	nđ			
Benzo(b) & (k)fluoranthene	1	nd			
Benzo(a)pyrene	0.5	nd		-	
Indeno(1.2.3-cd)pyrene	0.5	nd			
Dibenz(a.h)anthracene	0.5	nd			
Benzo(g.h.i)perylene	0.5	nd			
Total USEPA Priority PAHs	0.5	nd			
2-Fluorobiphenyl-SURROGATE	1	107%	······		
Anthracene-d10-SURROGATE	1	108%			
p-Terphenyl-D14-SURROGATE	1	1 20 %			

PQL = Practical Quantitation Limit

LNR = Samples Listed not Received

Soils

Waters

Leachates

 $nd = \langle PQL \rangle$

-- = Not Applicable

Refer to Amdel standard laboratory qualifier codes for comments.

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

(j) amdel

Page3 of4plus Cover Page

	Lab No	E47948			
Analyte	Sample Id	SP1			
	PQL				-
E1081 OC's & Total PCB's in Soil					
НСВ	0.1	nd			
a-BHC	0.1	nd			
g-BHC	0.1	nd			
Heptachlor	0.1	nd			
Aldrin	0.1	nd			
b-BHC	0.1	nd			
d-BHC	0.1	nd			
Oxychlordane	0.1	nd			
Heptachlor epoxide	0.1	nd			
Endosulfan 1	0.1	nd			
Chlordane-Trans	0.1	nd			
Chlordane-Cis	0.1	nd			
trans-Nonachlor	0.1	nd			
DDE	0.1	nd		-	
Dieldrin	0.1	nd			
Endrin	0.1	nd			
DDD	0.1	nd			
Endosulfan 2	0.1	nd			
DDT	0.1	nd			
Endosulfan sulfate	0.1	nd	!		
Methoxychlor	0.1	nđ			
Total Polychlorinated biphenyl	1	nd			
2.4.5.6-TCMX-SURROGATE	1	112%			

PQL = Practical Quantitation Limit

LNR = Samples Listed not Received

Soils Waters

Leachates

-- = Not Applicable

 $nd = \langle PQL \rangle$

Refer to Amdel standard laboratory qualifier codes for comments.

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

Page 4 of 4 plus Cover Page

	Lab No	E47948			
Analyte	Sample Id	SP1	· · · · · · · · · · · · · · · · · · ·		
Analyte		511			
	PQL	conversion of the first of			
E5910 Metals in Soil					
Arsenic	5	nd			
Cadmium	0.5	nd			
Chromium	5	11			
Copper	5	9			
Nickel	2	7	-		
Lead	5	9		:	
Zinc	5	26			
E5950 Mercury in Soil					
Mercury	0.05	nd			1.0
	0.05				
· · · · · · · · · · · · · · · · · · ·					
]

PQL = Practical Quantitation Limit

Soils

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

: mg/L (ppm) in leachate unless otherwise specified in Method Header

-- = Not Applicable

Refer to Amdel standard laboratory qualifier codes for comments.

CHAIN-OF-CUSTODY

Environmental and Geotechnical Services

Page 1 of 1

Laboratory Name:		Amdel					PPK	Job	No.					Results Exp	ected By/O	n:	12-Feb-02
Address:	5 Kelray Place				(Quote on all correspondence)					Fax Results			Greg Watkins				
·		Asquith								Fax Number:			9736 1568				
ax Number:		02 9482 1734					27L	311	Ε					Phone Numb	er:		9736 9725
hone Numbers		02 9482 1922		7										.			3141/15
Contact Name:/		Andrew Spencer (Syd	(ney)										••	Invoice To:	Greg Watkin	S	PPK V
.					vledium ⁺	reservative Type	-Itered (x)	No. of Containers	TPH/BTEX	Analy	OC/PCB Sis/	Metals Metals					RECEIVED - 5 FEN 2002 - 2E0320
Date Sampled	Τίξπα	Sample I.D Submitted	Conlainer Size	Sample Location	~		<u> </u>			<u>a</u>	0			Sampled By	Company	Signature	
5/02/2002	Fat	943 SP1	125mi		s	-	- 1	2	x	x	x	x	1	1	PPK	1	
							1										the financial states of the second states of the se
							-						1			1	
													-			1	-
																1	
													-				
																	and the second
Relinquished By (Na	me);	Grant Sainsbery	Received By (Nat	ne):		aper					led B	(Name):			Received By	(Name):	-
Date: Company:		5/02/2002 PPK	Date: Company:			12/0 2mdi			Date:						Date:		
On Behalf Of:			On Behalf OI:			mar	~		Com On B						Company: On Behalf Of		
Signature:		Schedule 2.2(a)(ii	Signature:		Sche	edule	2.2(Signa				+		Signalure:		
- 0		_													oignadic.		
					r												
<u>PPK</u> 9 Blaxland Road Rhodes NSW 21				M	Con	nmer	nts:	Met	als inc	clude	As, C	d, Cr, Cu,	Ni, F	Pb, Zn, Hg		* Legend:	: S = Soil, W = Water, F ≈ Filter T = Tube

.1

,

• A second processing of the second process

(j) amdel

AMDEL INTERNAL QUALITY ASSURANCE REVIEW.

Job No. 2E0320

<u>General</u>

- 1. Laboratory QA/QC including Method Blanks, Duplicates, Matrix Spikes, Laboratory Control Samples or CRM's are included in this QA/QC appendix. (Where applicable)
- 2. Inter-Laboratory proficiency trial results are available upon request.
- 3. PQLs are matrix dependent and are increased accordingly where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spike or surrogate recoveries.
- 5. Where 3 and 2 significant figures are reported for >10x PQL and <10x PQL respectively, the last figure is uncertain and is provided for statistical purposes only.
- 6. Samples duplicated or spiked are from this job only and are identified in the following QA/QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered samples, unless noted otherwise.

Maximum Holding Times for Soils, Sediments and Waters

Parameter

<u>Soils</u>

Volatile and Semi-Volatile Organic Analysis. Metals Inorganics* TCLPs*

Waters

Volatile Organic Analysis Semi-Volatile Organic Analysis Inorganics* Metals (dissolved metals should be supplied field filtered)

Chain of Custody and Sample Integrity

Holding Times

Extracted in 14 days, analysed within 40 days. Extracted and analysed within 28 days-6 months. Extracted and analysed within 7-28 days. Extracted and analysed within 14 days, (Zero Headspace-TCLP 7 days).

Analysed within 7 days (USEPA requires 14 days). Extracted in 7 days, analysed within 40 days. Analysed within 24 hrs-28 days. Prepared and analysed within 28 days.

* Please refer to 'Preservation Information Chart for Soils, Sediments & Waters' for further information. (ISFORM.098). Holding times may be extended with the use of preservation bottles and/or freezing samples. Holding times can be calculated from dates reported in the body of the report. Tests clearly exceeding holding times will be noted when sufficient information is provided. Reference: USEPA SW846 and AMDEL SPM-01 (incorporating NEPM Guidelines).

•	Yes/No/NA
Chain of Custody / instructions received with samples	Yes
Custody seals were received intact, if used	NA
Samples were received chilled and in good condition	Yes
Samples received appropriately preserved for all tests	Yes
VOC/SVOC samples were received in teflon lined containers	Yes
Samples received with Zero Headspace	Yes
Chain of Custody completed and attached (if applicable)	Yes
Chromatography Calibration/Acceptence Criteria (if applicable)	

Retention time window meets acceptance criteria (+/-2%)	Yes
Reference standard meets acceptance criteria (+/-10%)	Yes
Recalibration standard meets acceptance criteria (+/-15%)	Yes
Internal standard recovery acceptable.	Yes

AMDEL INTERNAL QUALIT	TY ASSURANCE REVIEW Cont	Page 2
Amdel QA/QC Compliance Assessm	<u>ent</u>	<u>Compliance</u>
Surrogates performed on all appropri acceptance limits (70% - 130% recov	ate GC analyses and meet /ery*).	Please see body of report
Matrix Spikes performed once per pr 1 in 20 samples (Results meet accept recovery* or 80% - 120% recovery*	ance limits - 70% - 130%	Please see body of report
Laboratory Control samples perform and at least 1 in 20 samples (Results - 70% - 130% recovery* in soil or 70	ed once per process batch meet acceptance limits 0%-130%/90-110% recovery* for waters.)	Yes
Laboratory Duplicate samples perfor and at least 1 in 10 samples	med once per process batch	NA
Laboratory duplicates meet acceptant <4 PQL - +/- 2 PQ 4-10 PQL - 0-25 or 50 >10 PQL - 0-10 or 30	L 1% RPD	Please see body of report
Method Blanks performed once per p 1 in 20 samples (Results not detected	process batch and at least at the PQL).	Yes
N/A=Not Applicable.	* Phenols 50% - 130% recovery * SVOCs 60% - 130% recovery * Phenoxy Acid Herbicides 60% - 140% recovery	
QA/QC Appendix	-	
Please refer to the following pages for For further information on samples on notations in the body of the report pla	r non-conformance in QC protocols please see	
Additional Comments		

....

槟

	1994 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sche	dule	2.2(a)(ii)

<u>R. Mooney B.Sc. (Hons) Dip. FDA</u> Technical Services Manager Sydney

AMDEL STANDARD LABORATORY QUALIFIER CODES.

Job NO. 2E0320

General

Qualifier (<u>Codes</u>
-------------	--------------

Description

*	PQLs are raised due to matrix interference.
@	PQLs are raised due to the insufficient sample.
\$	The mass imbalance indicates the presence of other ions not measured as part of this procedure.
&	Surrogate recoveries could not be determined due to the dilution required to quantify the analyte.
IS	Insufficient sample was supplied to conduct this analysis.
nd	<pql< td=""></pql<>
	Not applicable
LNR	Sample listed on the COC, but not received.
J	The analyte was positively identified; the associated numerial value is the approximate concentration of the analyte in the sample.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a 'tentative' identification.
NJ	The analysis indicates the presences of an analyte that has been 'tentatively' identified, and the associated numerical value represents it's approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The presence or absence of the analye cannot be verified.
#	The matrix spike concentration is significantly less than the sample analyte concentration, thus spike recovery can not be accurately determined.
**	The surrogate recovery is outside of the recommended acceptance criteria, due to matrix interference.
***	The surrogate recovery is outside of the recommended acceptance criteria. Insufficent sample to perform confirmation.
A	The spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.
В	The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity.
С	The sample was not received in a suitable timeframe to allow completion within the recommended holding time.
0	The results reported are 'recoverable organics' for this fraction, as the chromatogram and peak shape indicates the presence of a significant concentration of polar compounds.
Р	The concentration reported is mainly due to a single peak.
ISM	Insufficient sample was supplied to conduct matrix spike analysis.
ISD	Insufficient sample was supplied to conduct duplicate analysis.
М	The sample was received with the incorrect preservation for this analysis.
S	The sample contained significant amounts of sediment. Sample aliquots have been taken via decanting in an attempt to avoid including sediment in the analysis portion.
K	The raw data indicates the absence of 0.055g of Copper Sulphate in the sample.
L	Theoretically the TKN result should be greater or equal to ammonia concentration. However the difference reported is within the uncertainty of the individual tests.
D	Theoretically the total result should be greater or equal to the dissolved concentration. However the difference reported is within the uncertainty of the individual tests.
I	During Kjeldahl digestion, nitrate (>10mg/L) can oxidise ammonia resulting in a negative TKN interference.
E	The mass imbalance was equal to or less than 0.2 milli-equivalents.
F	Samples results are reported on an 'as received' basis.
Н	This sample was received with headspace (see first analyte notation).
Т	This test was performed outside the recommended holding time
G	Samples contain volatile halogenated oxygenated or other compounds that are not quantitated as part of C6-9.
J	Results expressed in mg/L (ppm) due to the high concentration of the analyte.

a- •

Page 3

Page 8 1 of

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	ed	Recovery Details				
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)		
E1230 TPH in Soil by Purge & Trap/GC-l	vis								
C6-C9 Fraction	100	91			91%				
E1221 TPH in Soil									
C10-C14 Fraction									
C15-C28 Fraction	550	520			94%				
C29-C36 Fraction									
E1010 BTEX (P&T) in Soil									
Benzene	10	9.2			91%				
Toluene	10	9			94%				
Ethylbenzene	10	9			94%				
m&p-Xylene	20	19			97%				
o-Xylene	10	10			95%				
			-			2			
						-i			

Page 2 of 8

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E1230 TPH in Soil by Purge & Trap	/GC-MS					
C6-C9 Fraction	5	nd				
E1221 TPH in Soil						
C10-C14 Fraction	10	nd				
C15-C28 Fraction	50	nd				
C29-C36 Fraction	50	nd				
E1010 BTEX (P&T) in Soil						
Benzene	0.2	nd				
Toluene	1	nd				
Ethylbenzene	1	nd				
m&p-Xylene	2	nd				
o-Xylene	1	nd				·····
			,			

= Practical Quantitation Limit = <PQL = Not Applicable PQL nd

(S) Soils : mg/kg (ppm) dry weight (W) Waters : mg/L (ppm) unless otherwise specified

....

Page 3 of 8

-- -

QAQC : Laboratory Control Sample(s)

		Leve	1 Detecte	ed	Recovery Details			
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)	
E1110 Priority PAH's in Soil								
Naphthalene	5	5.2			104%			
Acenaphthylene	5	5.4			108%			
Acenaphthene	5	5.2			102%			
Fluorene	5	5.2			102%			
Phenanthrene	5	5.2			102%			
Anthracene	5	5.0			98%			
Fluoranthene	5	5.0			100%			
Pyrene	5	5.0			100%			
Benz(a)anthracene	5	5.0			100%			
Chrysene	5	5.0			98%			
Benzo(b) & (k)fluoranthene	10	10			100%			
Benzo(a)pyrene	5	5.0			100%			
Indeno(1.2.3-cd)pyrene	5	5.2			102%			
Dibenz(a.h)anthracene	5	5.4			108%			
Benzo(g.h.i)perylene	5	5.4			106%			
						14.5		
				-				

 $\begin{array}{ll} PQL = Practical Quantitation Limit \\ -- &= Not Applicable \\ nd &= < PQL \end{array}$

8 Page **4 of**

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E1110 Priority PAH's in Soil						••
Naphthalene	0.5	nd				
Acenaphthylene	0.5	nd				<i>w.m.</i> , , ,
Acenaphthene	0.5	nd				
Fluorene	0.5	nd				
Phenanthrene	0.5	nd				
Anthracene	0.5	nd				
Fluoranthene	0.5	nd				
Pyrene	0.5	nd		·		
Benz(a)anthracene	0.5	nd				
Chrysene	0.5	nd				
Benzo(b) & (k)fluoranthene	1	nd				
Benzo(a)pyrene	0.5	nd				
Indeno(1.2.3-cd)pyrene	0.5	nd				
Dibenz(a.h)anthracene	0.5	nd				
Benzo(g.h.i)perylene	0.5	nd				
·						

= Practical Quantitation Limit = <PQL = Not Applicable PQL nd --

(S) Soils : mg/kg (ppm) dry weight (W) Waters : mg/L (ppm) unless otherwise specified

-

ł

8 Page 5 of

QAQC : Laboratory Control Sample(s)

Level 0.5 0.5 0.5 0.5 0.5 0.5	Result1 0.5 0.5 0.5 0.5 0.5 0.5	Result2	Result3	Rec 1 (%) 94% 91% 92%	Rec 2 (%)	Rec 3 (%)
0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5			91%		28
0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5			91%		
0.5 0.5 0.5 0.5	0.5 0.5					
0.5 0.5 0.5	0.5			92%	1	
0.5						
0.5	0.5	1		93%		
				93%		
0.5	0.5			94%		
0.5	0.4			80%		
0.5	0.5			93%		
0.5	0.5			93%		
0.5	0.5			92%		
0.5	0.5			93%		
0.5	0.5			93%		
0.5	0.5			93%		
1.0	1.0			93%		
0.5	0.5			92%		
0.5	0.5			92%		
1	1.0			93%		
0.5	0.5			92%		
1.0	1.0			95%		
0.5	0.5			92%		
0.5	0.5			94%		
-						
	0.5 0.5 1.0 0.5 0.5 1 0.5 1.0 0.5 0.5	$\begin{array}{c cccc} 0.5 & 0.5 \\ \hline 0.5 & 0.5 \\ \hline 1.0 & 1.0 \\ \hline 0.5 & 0.5 \\ \hline 0.5 & 0.5 \\ \hline 1 & 1.0 \\ \hline 0.5 & 0.5 \\ \hline 1.0 & 1.0 \\ \hline 0.5 & 0.5 \\ \hline \end{array}$	0.5 0.5 0.5 0.5 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 1 1.0 0.5 0.5 1.0 1.0 0.5 0.5 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 1.0 1.0 0.5 0.5 0.5 0.5 1 1.0 0.5 0.5 1 1.0 0.5 0.5 1.0 1.0 0.5 0.5 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 93% 0.5 0.5 93% 1.0 1.0 93% 0.5 0.5 93% 0.5 0.5 92% 0.5 0.5 92% 1 1.0 93% 0.5 0.5 92% 1 1.0 93% 0.5 0.5 92% 1.0 1.0 93% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92%	0.5 0.5 93% 0.5 0.5 93% 1.0 1.0 93% 0.5 0.5 93% 0.5 0.5 92% 0.5 0.5 92% 1 1.0 93% 0.5 0.5 92% 1 1.0 93% 0.5 0.5 92% 1.0 1.0 93% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92% 0.5 0.5 92%

PQL = Practical Quantitation Limit -- = Not Applicable nd = <PQL

(S) Soils : mg/kg (ppm) dry weight (W) Waters : mg/L (ppm) unless otherwise specified

~ ·

Page 6 of 8

.....

Job Number : 2E0320

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E1081 OC's & Total PCB's in Soil						н
НСВ	0.1	nd				
a-BHC	0.1	nd				
g-BHC	0.1	nd				
Heptachlor	0.1	nd				
Aldrin	0.1	nd				
b-BHC	0.1	nd				
d-BHC	0.1	nd				
Oxychlordane	0.1	nd		× .		
Heptachlor epoxide	0.1	nd			1	
Endosulfan 1	0.1	nd				
Chlordane-Trans	0.1	nd				
Chlordane-Cis	0.1	nd				
trans-Nonachlor	0.1	nd				
DDE	0.1	nd				
Dieldrin	0.1	nd				
Endrin	0.1	nd				
DDD	0.1	nd				
Endosulfan 2	0.1	nd				
DDT	0.1	nd				
Endosulfan sulfate	0.1	nd				
Methoxychlor	0.1	nd				
Total Polychlorinated biphenyl	1	nd				
·						

= Practical Quantitation Limit = <PQL = Not Applicable PQL nd

Page 7 of 8

....

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	Recove	ry Details			
Analyte	Level	Result1	Result2	Result3	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)	
E5910 Metals in Soil							-	
Arsenic	50	51			103%			
Cadmium	50	49			98%			
Chromium	50	52			103%			
Copper	50	53			107%			
Nickel	50	49			99%			
Lead	50	49			97%		· · · · · · · · · · · · · · · · · · ·	
Zinc	50	50			100%			
E5950 Mercury in Soil					•			
Mercury	0.50	0.50			100%			
			_					
	•							
						,		

Page **8 of** 8

.....

Job Number : 2E0320

QAQC : Method Blank(s)

ANALYTE	Sample ID PQL	Blank1	Blank2	Blank3	Blank4	Blank5
E5910 Metals in Soil						
Arsenic	5	nd				
Cadmium	0.5	nd				
Chromium	5	nd				
Copper	5	nd				
Nickel	2	nd				
Lead	5	nd				
Zinc	5	nd				
E5950 Mercury in Soil						•
Mercury	0.05	nd				
			-			

= Practical Quantitation Limit = <PQL = Not Applicable PQL nd

CHAIN-OF-CUSTODY

Kingston Tank Pull

Page 1 of 1

1

Laboratory Name	:	ALS Environmental			PPK Job No.								T		Results Exp	ected By/O	n:		27-Dec-01
Address:		277-289 Woodpark Ro	ad		20000000	(Quote on all correspondence)									Fax Results				Greg Watkins
-		Smithfield NSW 2164													Fax Number:			9736 1568	
Fax Number:							27L	311	E						Phone Number:				9736 9725
Phone Number:		02 8784 8555	ka uku solo dikukulo - . Ma wa sa	1											.				
Contact Name:		Micheal Heery (Sydne	у)]											Invoice To:	Greg Watkin	S	PPK	
		9		-					,	Analy	sis R	equire	ed						
¥7,						tive Type	(x	Containers	×										Batch No.:
5					Medium *	Preservative	Filtered (x)	No. of Co	ТРН/ВТЕХ	PAH	OC/PCB	Metals	Lead						CS31245
Date Sampled	Time	Sample I.D Submitted	Container Size	Sample Location				÷							Sampled By	Company	Signature		Remarks Ambr
17/12/2001		1712 QA1A	125 ml		S	Ice		1	X	X			X		GS	PPK			Dother .
							3												Diubcontract Work
							1												Bettle Return
					Sched	ule 2.	2(a)(ii)				127								Linm, Anal. Acrien
Relinquished By (Na	ame):	the second se	Received By (Nar						Relin		ed By	(Nan	ne):		Received By (Name):				1
Date:			Date:		00	121	Oľ		Date:			1011				Date:			1/2)0(,
Company:		PPK	Company:	2		1.5	5_		Comp							Company:	22.5		
On Behalf Of:			On Behalf Of:		1 19	.23	S	WALKS	On B							On Behalf Of	4	1-201-2	<u>+</u>
Signature:		Schedule 2.2(a)(ii)	Signature:		Sche	oure		(u)	Signa	ature:						Signature:			
		.	L		- T			_							· · · · · · · · · · · · · · · · · · ·				
PPK 9 Blaxland Roa Rhodes NSW 213	38	echnical Services			Com	imer	nts:	Meta	als inc	clude	As, C	d, Cr	, Cu, N	Ni, P	РЬ, Zn, Hg		* Legend:	S = Sc T = Tu	bil, W = Water, F = F

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT: MR GREG WATKINS PPK ENVIR & INFRASTRUCTURE P/L CLIENT: ADDRESS:

9 BLAXLAND ROAD RHODES NSW 2138

ORDER No.: 27L311E PROJECT: KINGSTON TANK PULL

ES31245 BATCH: SUB BATCH: 0 LABORATORY: DATE RECEIVED: DATE COMPLETED: SAMPLE TYPE: No. of SAMPLES: 1

SYDNEY 20/12/2001 08/01/2002 SOIL 1

COMMENTS

Sample as received digested by USEPA method 200.2 (mod) prior to the determination of Lead. Results reported on a dry weight basis. All analysis and Laboratory QC conducted in accordance with Schedule B(3) NEPM Guideline on Laboratory Analysis of Potentially Contaminated Soil (December 1999).

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164

Phone: 61-2-8784 8555 61-2-8784 8500 Fax: brianw@als.com.au Email:

Signatory

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland Hong Kong Singapore Kuala Lumpur Bogor

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Vancouver Santiago Antofagasta Lima

AMERICAS

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Batch:	ES31245
Sub Batch:	0
Date of Issue:	08/01/2002
Client:	PPK ENVIR & INFRASTRUCTURE P/L
Client Reference:	KINGSTON TANK PULL

CERTIFICATE OF ANALYSIS

					SAMPLE IDENTIFICATION
		Laborat	ory I.D.	1	
		Date Sa	mpled	17/12/2001	
				1712QA1A	
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR		
EA-055	Moisture Content (dried @ 103'C)	%	0.1	16.5	
EG-005T	Lead - Total	mg/kg	1	14	

ALS Environmental

1

Batch: Sub Batch: Date of Issue: Client: Client Reference:	ES31245 0 08/01/2002 PPK ENVIR & I KINGSTON TA	NFRASTRUCTURE NK PULL	P/L	Ql	JALITY C	ONTRO	L REPOF	RT	(ALS)
						SAM	PLE IDENTIFIC	TION	
		Laboratory I.D.	200	201	202				
		Date Sampled	20/12/2001	20/12/2001	20/12/2001				

MS

91.0%

CHECKS AND SPIKES

5

LCS

95.0%

METHOD

BLANK

<1

UNIT

%

mg/kg

LOR

0.1

1

ALS	Enui	ironma	ental
-----	------	--------	-------

ANALYSIS DESCRIPTION

Moisture Content (dried @ 103'C)

- Total

Lead

METHOD

EA-055

EG-005T

3

ALS

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT: MR GREG WATKINS CLIENT: PPK ENVIR & INFRASTRUCTURE P/L ADDRESS:

> 9 BLAXLAND ROAD RHODES NSW 2138

ORDER No.: 27L311E PROJECT: KINGSTON TANK PULL BATCH: SUB BATCH: LABORATORY: DATE RECEIVED: DATE COMPLETED: SAMPLE TYPE: No. of SAMPLES:

ES31245 1 SYDNEY 20/12/2001 08/01/2002 SOIL

COMMENTS

Sample analysed on an as received basis. Results reported on a dry

weight basis. All analysis and Laboratory QC conducted in accordance

with Schedule B(3) NEPM Guideline on Laboratory Analysis of

Potentially Contaminated Soil (December 1999).

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address 277-289 Woodpark Road SMITHFIELD NSW 2164 Phone: 61-2-8784 8555

Fax: 61-2-8784 8500

Email: brianw@als.com.au

Signator

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland Hong Kong Singapore Kuala Lumpur Bogor

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Vancouver Santiago Antofagasta Lima

AMERICAS

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Schedule 2.2(a)(ii)

Sub Batch Date of Iss Client: Client Ref	sue: 08/01/2002 PPK ENVIR & IN		JCTURE	P/L	CERTIFICATE OF ANALTSIS
	······································				SAMPLE IDENTIFICATION
		Laborat	ory I.D.	1	
		Date Sa	ampled	17/12/2001	
				1712QA1A	
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR		
EA-055	Moisture Content (dried @ 103'C)	%	0.1	16.5	
EP-071-SS	TOTAL PETROLEUM HYDROCARBONS				
EP-071-SS	C6 - C9 Fraction	mg/kg	2	<2	
EP-071-SS	C10 - C14 Fraction	mg/kg	50	<50	
EP-071-SS	C15 - C28 Fraction	mg/kg	100	<100	
EP-071-SS	C29 - C36 Fraction	mg/kg	100	<100	
EP-080-SS	BTEX				
EP-080-SS	Benzene	mg/kg	0.2	<0.2	

0.2

0.2

0.2

0.2

0.2

1

1

1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

%

%

<0.2

<0.2

<0.2

<0.2

<0.2

95

92

91

CEPTIFICATE OF ANALYSIS

ALS Environmental

ES31245

VOLATILE TPH/BTEX COMPOUND SURROGATES

Batch:

EP-080-SS

EP-080-SS

EP-080-SS

EP-080-SS

EP-080-SS

EP-080S-SS

EP-080S-SS

EP-080S-SS

EP-080S-SS

Toluene

Chlorobenzene

meta- & para-Xylene

1.2-Dichloroethane-D4

4-Bromofluorobenzene

Ethylbenzene

ortho-Xylene

Toluene-D8

ł

Batch:ES31245Sub Batch:1Date of Issue:08/01/2002Client:PPK ENVIR & INFRASTRUCTURE P/LClient Reference:KINGSTON TANK PULL

QUALITY CONTROL REPORT

								SAMPLE IDE	ENTIFICATION	
		Laborat	ory I.D.	100	101	102	103	104		
		Date Sa	mpled	20/12/2001	20/12/2001	20/12/2001	20/12/2001	20/12/2001		
				METHOD	NTPHT3025	NTPHT3025	NTPHT3025	NTPHT3025		
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	BLANK	SCS	DCS	MS	MSD		L
							(CHECKS AND	SPIKES	
EA-055	Moisture Content (dried @ 103'C) TOTAL PETROLEUM HYDROCARBONS	%	0.1							
EP-071-SS	C6 - C9 Fraction	mg/kg	2	<2	88.0%	101%	83.0%	87.0%		
EP-071-SS	C10 - C14 Fraction	mg/kg	50	<50	96.0%	87.0%	114%	99.0%		
EP-071-SS	C15 - C28 Fraction	mg/kg	100	<100	96.0%	90.0%	117%	102%		
EP-071-SS	C29 - C36 Fraction	mg/kg	100	<100	104%	101%				
EP-080-SS	BTEX									
EP-080-SS	Benzene	mg/kg	0.2	<0.2	92.0%	97.0%	94.0%	94.0%		
EP-080-SS	Toluene	mg/kg	0.2	<0.2	86.0%	102%	84.0%	85.0%		
EP-080-SS	Chlorobenzene	mg/kg	0.2	<0.2	96.0%	102%	93.0%	91.0%		
EP-080-SS	Ethylbenzene	mg/kg	0.2	<0.2	88.0%	101%				
EP-080-SS	meta- & para-Xylene	mg/kg	0.2	<0.2	91.0%	100%				
EP-080-SS	ortho-Xylene	mg/kg	0.2	<0.2	92.0%	102%				
EP-080S-SS	VOLATILE TPH/BTEX COMPOUND SURR	OGATES								
EP-080S-SS	1.2-Dichloroethane-D4	%	1	97	99	92	107	104		
EP-080S-SS	Toluene-D8	%	1	101	96	100	90	89		
EP-080S-SS	4-Bromofluorobenzene	%	1	98	96	99	94	97		L

ALS Environmental

1

ALS Environmental

CERTIFICATE OF ANALYSIS

CONTACT: MR GREG WATKINS CLIENT: PPK ENVIR & INFRASTRUCTURE P/L ADDRESS:

9 BLAXLAND ROAD RHODES NSW 2138

ORDER No.: 27L311E PROJECT: KINGSTON TANK PULL

BATCH:	ES3
SUB BATCH:	2
LABORATORY:	SYD
DATE RECEIVED:	20/1
DATE COMPLETED:	08/0
SAMPLE TYPE:	SO
No. of SAMPLES:	1

ES31245 2 SYDNEY 20/12/2001 08/01/2002 SOIL

COMMENTS

Sample analysed on an as received basis. Results reported on a dry

weight basis. All analysis and Laboratory QC conducted in accordance

with Schedule B(3) NEPM Guideline on Laboratory Analysis of

Potentially Contaminated Soil (December 1999).

NOTES

This is the Final Report and supersedes any preliminary reports with this batch number. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: SYDNEY

Address

277-289 Woodpark Road SMITHFIELD NSW 2164 Phone: 61-2-8784 8555

Fax: 61-2-8784 8500

Email: brianw@als.com.au

Signator

LABORATORIES

AUSTRALASIA

Brisbane Melbourne Sydney Newcastle Auckland Hong Kong Singapore Kuala Lumpur Bogor

Australian Laboratory Services Pty Ltd (ABN 84 009 936 029)

Vancouver Santiago Antofagasta Lima

AMERICAS

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Page 7 of 9

Schedule 2.2(a)(ii)

Batch:	ES31245
Sub Batch:	2
Date of Issue:	08/01/2002
Client:	PPK ENVIR & INFRASTRUCTURE P/L
Client Reference:	KINGSTON TANK PULL

CERTIFICATE OF ANALYSIS

					SAMPLE IDENTIFICATION
		Laborat	ory I.D.	1	
		Date Sa	mpled	17/12/2001	
METHOD	ANALYSIS DESCRIPTION		LOR	1712QA1A	
EA-055 EP-076A-SS	Moisture Content (dried @ 103'C) POLYNUCLEAR AROMATIC HYDROCAR	%	0.1	16.5	
EP-076A-SS	Naphthalene	mg/kg	0.5	<0.5	
EP-076A-SS	Acenaphthylene	mg/kg	0.5	<0.5	
EP-076A-SS	Acenaphthene	mg/kg	0.5	<0.5	
EP-076A-SS	Fluorene	mg/kg	0.5	<0.5	
EP-076A-SS	Phenanthrene	mg/kg	0.5	<0.5	
EP-076A-SS	Anthracene	mg/kg	0.5	<0.5	
EP-076A-SS	Fluoranthene	mg/kg	0.5	<0.5	
EP-076A-SS	Pyrene	mg/kg	0.5	<0.5	
EP-076A-SS	Benz(a)anthracene	mg/kg	0.5	<0.5	
EP-076A-SS	Chrysene	mg/kg	0.5	<0.5	
EP-076A-SS	Benzo(b)fluoranthene	mg/kg	0.5	<0.5	
EP-076A-SS	Benzo(k)fluoranthene	mg/kg	0.5	<0.5	
EP-076A-SS	Benzo(a)pyrene	mg/kg	0.5	<0.5	
EP-076A-SS	Indeno(1.2.3.cd)pyrene	mg/kg	0.5	<0.5	
EP-076A-SS	Dibenz(a.h)anthracene	mg/kg	0.5	<0.5	
EP-076A-SS	Benzo(g.h.i)perylene	mg/kg	0.5	<0.5	
EP-076S-SS	SURROGATE COMPOUNDS				
EP-076S-SS	2-Fluorobiphenyl	%	1	74	
EP-076S-SS	Anthracene-d10	%	1	91	
EP-076S-SS	p-Terphenyl-d14	%	1	125	

ALS Environmental

-

m i i m i

٤

1

Batch: Sub Batc Date of Is Client: Client Re	ssue: 08/01/2002 PPK ENVIR &		JCTURE	P/L	QL	JALITY		ROL RE		ALS	\$
		·····				I	The same the second commencement of the		NTIFICATION		
		Laborat	ory I.D.	100	101	102	103	104			
		Date Sa	mpled	20/12/2001	20/12/2001	20/12/2001	20/12/2001	20/12/2001			
	1			METHOD	NEP076S393	NEP076S393	NEP076S393	NEP076S393			
METHOD	ANALYSIS DESCRIPTION	UNIT	LOR	BLANK	SCS	DCS	MS	MSD			
							(CHECKS AND S	SPIKES		
EA-055	Moisture Content (dried @ 103'C)	%	0.1								<u></u>
EP-076A-SS	POLYNUCLEAR AROMATIC HYDROCA	ARBONS									
EP-076A-SS	Naphthalene	mg/kg	0.5	<0.5	107%	122%					
EP-076A-SS	Acenaphthylene	mg/kg	0.5	<0.5	105%	122%					
EP-076A-SS	Acenaphthene	mg/kg	0.5	<0.5	108%	123%	92.0%	108%			
EP-076A-SS	Fluorene	mg/kg	0.5	<0.5	108%	124%					
EP-076A-SS	Phenanthrene	mg/kg	0.5	<0.5	102%	119%					
EP-076A-SS	Anthracene	mg/kg	0.5	<0.5	102%	119%					
EP-076A-SS	Fluoranthene	mg/kg	0.5	<0.5	102%	119%					
EP-076A-SS	Pyrene	mg/kg	0.5	<0.5	95.6%	112%	99.7%	110%			
EP-076A-SS	Benz(a)anthracene	mg/kg	0.5	<0.5	96.3%	112%					
EP-076A-SS	Chrysene	mg/kg	0.5	<0.5	99.8%	117%					
EP-076A-SS	Benzo(b)fluoranthene	mg/kg	0.5	<0.5	98.3%	119%					
EP-076A-SS	Benzo(k)fluoranthene	mg/kg	0.5	<0.5	103%	117%					
EP-076A-SS	Benzo(a)pyrene	mg/kg	0.5	<0.5	98.0%	114%					
EP-076A-SS	indeno(1.2.3.cd)pyrene	mg/kg	0.5	<0.5	101%	119%					
EP-076A-SS	Dibenz(a.h)anthracene	mg/kg	0.5	<0.5	101%	119%					
EP-076A-SS	Benzo(g.h.i)perylene	mg/kg	0.5	<0.5	99.7%	116%					
EP-076S-SS	SURROGATE COMPOUNDS										
EP-076S-SS	2-Fluorobiphenyl	%	1	85	105	118	89	102			

1

1

86

83

105

105

123

121

%

%

ALS Environmental

Anthracene-d10

p-Terphenyl-d14

EP-076S-SS

EP-076S-SS

92

96

103

98

1

ł

ALS Environmental

ORGANICS QUALITY CONTROL REPORT

BATCH NO: ES31245

DATE BATCH RECEIVED: 20/12/01

CLIENT: PPK E & I, NSW

DATE BATCH COMPLETED: 8/01/02

PROJECT: 27L311E

Method	Test	Matrix	Method	Reference	QC Lot Number	Date	Date
Code			Extraction	Analysis		Samples Extracted	Samples Analysed
EP-071	TPH(SV)	Soil	Tumbler	USEPA 8015A	NTPHT3025	27/12/01	27/12/01
EP-071/80	TPH(V)/BTEX	Soil	USEPA 5030A	USEPA 8260A	NVOCS3025	27/12/01	27/12/01
EP-076	PAH (USEPA	Soil	Tumbler	USEPA 8270C	NEP076S-393	27/12/01	29/12/01

Where applicable, internal standards are added to sample extracts prior to instrumental analysis. Absolute peak areas and retention times fall within the criteria specified in the individual methods. Continuing Calibration (CC) standards are run at the frequency of 1 in every 20 samples.

Abbreviations: SV = semivolatile, V = volatile

*: In-house methods

BATCH QUALITY CONTROL - CONTROL SPIKE/DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

Vol QC Lot : NVOCS3025 Semivol QC Lot : NTPHT3025 MATRIX : Soil

	ватсн	Blank	Spike		Spike f	Results		Co	ntrol Lir		
COMPOUND	ADJ.	Conc.	Conc.	SCS	DCS	Av.	RPD	Reco	overy	RPD	
	(MDL)			Conc.	Conc.	Rec.		0	6		
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	Low	High	%	
C6-C9	2.0	<lor< td=""><td>20</td><td>17.6</td><td>20.1</td><td>94</td><td>13</td><td>90</td><td>108</td><td>20</td></lor<>	20	17.6	20.1	94	13	90	108	20	
C10-C14	25	<lor< td=""><td>200</td><td>192</td><td>174</td><td>92</td><td>10</td><td>79</td><td>117</td><td>20</td></lor<>	200	192	174	92	10	79	117	20	
C15-C28	50	<lor< td=""><td>200</td><td>192</td><td>180</td><td>93</td><td>6</td><td>83</td><td>115</td><td>20</td></lor<>	200	192	180	93	6	83	115	20	
C29-C36	50	<lor< td=""><td>200</td><td>208</td><td>202</td><td>102</td><td>3</td><td>82</td><td>130</td><td>20</td></lor<>	200	208	202	102	3	82	130	20	

COMMENTS:

1) The control limits are based on ALS laboratory statistical data (Method QWI-ORG/07).

2) * : Recovery or RPD falls outside the recommended control limit.

3) MDL = Method Detection Limit

4) LOR = Level Of Reporting

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : NVOCS3025

MATRIX : Soil

	ватсн	Blank	Spike		Spike F	Results		Co	nits	
COMPOUND	ADJ.	Conc.	Conc.	SCS	DCS	Av.	RPD	Reco	overy	RPD
	(MDL)			Conc.	Conc.	Rec.		q	6	
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%	%	Low	High	%
Benzene	0.1	<lor< td=""><td>1.0</td><td>0.92</td><td>0.97</td><td>94</td><td>5</td><td>83</td><td>115</td><td>20</td></lor<>	1.0	0.92	0.97	94	5	83	115	20
Toluene	0.1	<lor< td=""><td>1.0</td><td>0.86</td><td>1.02</td><td>94</td><td>18</td><td>85</td><td>113</td><td>20</td></lor<>	1.0	0.86	1.02	94	18	85	113	20
Chlorobenzene	0.1	<lor< td=""><td>1.0</td><td>0.96</td><td>1.02</td><td>99</td><td>6</td><td>89</td><td>112</td><td>20</td></lor<>	1.0	0.96	1.02	99	6	89	112	20
Ethylbenzene	0.1	<lor< td=""><td>1.0</td><td>0.88</td><td>1.01</td><td>94</td><td>14</td><td>86</td><td>114</td><td>20</td></lor<>	1.0	0.88	1.01	94	14	86	114	20
m- & p-Xylene	0.1	<lor< td=""><td>1.0</td><td>0.91</td><td>1.00</td><td>95</td><td>10</td><td>80</td><td>116</td><td>20</td></lor<>	1.0	0.91	1.00	95	10	80	116	20
o-Xylene	0.1	<lor< td=""><td>1.0</td><td>0.92</td><td>1.02</td><td>97</td><td>9</td><td>85</td><td>115</td><td>20</td></lor<>	1.0	0.92	1.02	97	9	85	115	20

COMMENTS :

1) The control limits are based on ALS laboratory statistical data (Method QWI-ORG/07).

2) * : Recovery or RPD falls outside the recommended control limit.

3) MDL = Method Detection Limit

4) LOR = Level Of Reporting

BATCH QUALITY CONTROL - MATRIX SPIKE/DUPLICATE

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

	Sample Spike		Spike Results				Control
COMPOUND	Results	Level	MS	MSD	Av.	RPD	Limits
			Conc	Conc	Rec.		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	RPD
C6-C9	<lor< td=""><td>10</td><td>8.3</td><td>8.7</td><td>85</td><td>5</td><td>20</td></lor<>	10	8.3	8.7	85	5	20
C10-C14	<lor< td=""><td>430</td><td>490</td><td>426</td><td>107</td><td>14</td><td>20</td></lor<>	430	490	426	107	14	20
C15-C28	<lor< td=""><td>1570</td><td>1834</td><td>1606</td><td>110</td><td>13</td><td>20</td></lor<>	1570	1834	1606	110	13	20
C29-C36	<lor< td=""><td>N/A</td><td>_</td><td></td><td></td><td></td><td></td></lor<>	N/A	_				

COMMENTS :

1) LOR: level of reporting

2) The control limits are based on ALS laboratory statistical data. (Method QWI-ORG/06)

3) * : Recovery or RPD falls outside of the recommended control limits.

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : N

NVOCS3025

SPIKED SAMPLE : ES31077-21 MATRIX : SOIL

	Sample	Spike		Spike Results			
COMPOUND	Results	Level	MS	MSD	Av.	RPD	Limits
			Conc	Conc	Rec.		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	RPD
Benzene	<lor< td=""><td>2.5</td><td>2.3</td><td>2.3</td><td>94</td><td>0</td><td>20</td></lor<>	2.5	2.3	2.3	94	0	20
Toluene	<lor< td=""><td>2.5</td><td>2.1</td><td>2.1</td><td>84</td><td>2</td><td>20</td></lor<>	2.5	2.1	2.1	84	2	20
Chlorobenzene	<lor< td=""><td>2.5</td><td>2.3</td><td>2.3</td><td>92</td><td>2</td><td>20</td></lor<>	2.5	2.3	2.3	92	2	20

COMMENTS :

1) LOR: level of reporting

2) The control limits are based on ALS laboratory statistical data. (Method QWI-ORG/06)

3) * : Recovery or RPD falls outside of the recommended control limits.

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

SEMIVOLATILES QC LOT NO.: VOLATILES QC LOT No.: NTPHT3025 NVOCS3025 ANALYST: NENSI.K. MATRIX : Soil

	QC DUPLICATE RESULTS					
COMPOUND	ES31077	ES31077	RPD			
	21	21D				
	mg/kg	mg/kg	%			
C 6-C 9	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>				
C10-C14	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>				
C15-C28	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>				
C29-C36	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>				

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : MATRIX :

NVOCS3025 Soil

Analyst : H.CAVANAUGH

ł

QC DUPLICATE RESULTS					
COMPOUND	ES31077	ES31077	RPD		
	21	21D			
	mg/kg	mg/kg	%		
Benzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
Toluene	<lor< td=""><td><lor< td=""><td>~**</td></lor<></td></lor<>	<lor< td=""><td>~**</td></lor<>	~**		
Chlorobenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
Ethylbenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
m- & p-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
o-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			

ALS EP-071 : Total Petroleum Hydrocarbons by Fractions

SEMIVOLATILES QC LOT NO.: VOLATILES QC LOT №.:

NTPHT3025 NVOCS3025 ANALYST: NENSI.K. MATRIX : Soil

	QC DUPLICATE RESULTS					
COMPOUND	ES31077	ES31077	RPD			
	27	27D				
	mg/kg	mg/kg	%			
C 6-C 9	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>				
C10-C14	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>				
C15-C28	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>				
C29-C36	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>				

ALS EP-080 : BTEX ANALYSIS

QC Lot No. : MATRIX :

NVOCS3025 Soil Analyst :

H.CAVANAUGH

QC DUPLICATE RESULTS					
COMPOUND	ES31077	ES31077	RPD		
	27	27D			
	mg/kg	mg/kg	%		
Benzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
Toluene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
Chlorobenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
Ethylbenzene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
m- & p-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			
o-Xylene	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>			

BATCH QUALITY CONTROL -- CONTROL SPIKE/DUPLICATE

ALS EP-076 : Polynuclear Aromatic Hydrocarbons

....

QC LOT No. :	NEP076S	-393	ANALYST ALICE TAT						
MATRIX:	Soils								
	Blank	Spike	S	SPIKE QC F	RESULTS		Cor	Control Limits	
	Conc	Level	SCS	DCS	Average	RPD	Re	ec.	RPD
COMPOUND			Rec.	Rec.	Rec.				
	mg/kg	mg/kg	(%	%	%	Low	High	%
EP-076A : Polynuclear	Aromatic H	ydrocarl	oons		8 - 11 19 19 19 19 19 19 19 19 19 19 19 19				
Naphthalene	<0.25	4.0	107	122	115	13.1	84.6	131	0 - 20
Acenaphthylene	<0.25	4.0	105	122	114	15	83	130	0 - 20
Acenaphthene	<0.25	4.0	108	123	116	13	83.6	128	0 - 20
Fluorene	<0.25	4.0	108	124	116	13.8	87.3	128	020
Phenanthrene	<0.25	4.0	102	118	110	14.5	79.4	129	0 - 20
Anthracene	<0.25	4.0	102	119	111	15.4	83.8	128	0 - 20
Fluoranthene	<0.25	4.0	102	119	111	15.4	83.3	131	0 - 20
Pyrene	<0.25	4.0	95.6	112	104	15.8	73.6	132	0 - 20
Benzo(a)anthracene	<0.25	4.0	96.3	112	104	15.1	64.6	140	0 - 20
Chrysene	<0.25	4.0	99.8	116	108	15	83.3	130	0 - 20
Benzo(b)fluoranthene	<0.25	4.0	98.3	119	109	19.1	72	136	0 - 20
Benzo(k)fluoranthene	<0.25	4.0	103	117	110	12.7	84.9	133	0 - 20
Benzo(a)pyrene	<0.25	4.0	98	114	106	15.1	80.1	132	0 - 20
Indeno(1.2.4.cd)pyrene	<0.25	4.0	101	119	110	16.4	81.7	126	0 - 20
Dibenzo(a.h)anthracene	<0.25	4.0	101	119	110	16.4	80.6	127	0 - 20
Benzo(g.h.l)perylene	<0.25	4.0	99.7	116	108	15.1	81.2	129	0 - 20
EP-076S : PAH Surrog	ates								
2-Fluorobiphenyl	85.1%	4.0	105	118	112	11.7	77.1	130	0 - 20
Anthracene-d10	86.2%	4.0	105	123	114	15.8	79.5	132	0 - 20
4-Terphenyl-d14	83.1%	4.0	105	121	113	14.2	80.3	137	0 - 20

COMMENTS:

1) The recovery control limits are based on ALS laboratory statistical data. (Method QWI-ORG/07)

2) The control limits on RPD (relative percent deviation) are fixed.

3) * : Recovery or RPD falls outside of the recommended control limits.

ALS EP-076 : Polynuclear Aromatic Hydrocarbons

QC LOT No. : MATRIX : ANALYST:

NEP076S-393 Soils ALICE TAT

			TE RESULTS	RPD	
		ES31092	ES31092		
COMPOUND	LOR	21	21D	RPD	Cont. Limit
	mg/kg	mg/kg	mg/kg	%	
EP-076A : Polynuclear Ar					
Naphthalene	0.25	<0.25	<0.25	n/a	
Acenaphthylene	0.25	<0.25	<0.25	n/a	
Acenaphthene	0.25	<0.25	<0.25	n/a	
Fluorene	0.25	<0.25	<0.25	n/a	
Phenanthrene	0.25	< 0.25	<0.25	n/a	
Anthracene	0.25	<0.25	<0.25	n/a	
Fluoranthene	0.25	< 0.25	<0.25	n/a	
Pyrene	0.25	<0.25	<0.25	n/a	
Benzo(a)anthracene	0.25	<0.25	<0.25	n/a	
Chrysene	0.25	<0.25	<0.25	n/a	
Benzo(b)fluoranthene	0.25	<0.25	<0.25	n/a	
Benzo(k)fluoranthene	0.25	<0.25	<0.25	n/a	
Benzo(a)pyrene	0.25	<0.25	<0.25	n/a	
Indeno(1.2.4.cd)pyrene	0.25	<0.25	<0.25	n/a	
Dibenzo(a.h)anthracene	0.25	<0.25	<0.25	n/a	
Benzo(g.h.l)perylene	0.25	<0.25	<0.25	n/a	
EP-076S : PAH Surrogate	es				
2-Fluorobiphenyl	1%	105%	109%	3.74	0 - 20
Anthracene-d10	1%	107%	108%	0.93	0 - 20
4-Terphenyl-d14	1%	115%	120%	4.26	0 - 20

Note: The permitted range for RPD (relative percent deviation) is specified in ALS Method QWI-EN/38 and is dependent on the magnitude of results in comparison to the level of reporting:

Result < 10 times LOR, no limit.

Result between 10 and 20 times LOR, 0% - 50%. Results > 20 times LOR, 0% - 20%.

ALS EP-076 : Polynuclear Aromatic Hydrocarbons

QC LOT No. : MATRIX : ANALYST: NEP076S-393 Soils ALICE TAT

		QC DUPLICA	TE RESULTS	RPD	
		ES31092	ES31092		
COMPOUND	LOR	22	22D	RPD	Cont. Limit
	mg/kg	mg/kg	mg/kg	%	
EP-076A : Polynuclear Ar	omatic Hydrod	carbons		이 이 가 가 같다. 	
Naphthalene	0.25	<0.25	<0.25	n/a	
Acenaphthylene	0.25	<0.25	<0.25	n/a	
Acenaphthene	0.25	<0.25	<0.25	n/a	
Fluorene	0.25	<0.25	<0.25	n/a	
Phenanthrene	0.25	<0.25	<0.25	n/a	
Anthracene	0.25	<0.25	<0.25	n/a	
Fluoranthene	0.25	<0.25	<0.25	n/a	
Pyrene	0.25	<0.25	<0.25	n/a	
Benzo(a)anthracene	0.25	<0.25	<0.25	n/a	
Chrysene	0.25	<0.25	<0.25	n/a	
Benzo(b)fluoranthene	0.25	<0.25	<0.25	n/a	
Benzo(k)fluoranthene	0.25	<0.25	<0.25	n/a	
Benzo(a)pyrene	0.25	<0.25	<0.25	n/a	
Indeno(1.2.4.cd)pyrene	0.25	<0.25	<0.25	n/a	
Dibenzo(a.h)anthracene	0.25	<0.25	<0.25	n/a	
Benzo(g.h.l)perylene	0.25	<0.25	<0.25	n/a	
EP-076S : PAH Surrogate	S				
2-Fluorobiphenyl	1%	122%	89.1%	31.2	* 0 - 20
Anthracene-d10	1%	113%	93.3%	19.1	0 - 20
4-Terphenyl-d14	1%	116%	98.7%	16.1	0 - 20
a second s					

Note: The permitted range for RPD (relative percent deviation) is specified in ALS Method QWI-EN/38 and is dependent on the magnitude of results in comparison to the level of reporting:

Result < 10 times LOR, no limit.

Result between 10 and 20 times LOR, 0% - 50%.

Results > 20 times LOR, 0% - 20%.

BATCH QUA	LITY C	ONTRC	0L M	ATRIX SF	IKE/DUPL	ICATE	
ALS E	P-076 : P	olynuc	lear Arom	atic Hydro	ocarbons		
QC LOT No. :	NEP076S	-393	А	NALYST :		ALICE T	AT
MATRIX:	Soils	Soils Sample ID: ES31092-					2-22
	Sample	Spike		SPIKE QC	RESULTS		Cont. Limit
	Results	Level	MS	MSD	Average	RPD	RPD
COMPOUND			Rec.	Rec.	Rec.		
	mg/kg	mg/kg	%	%	%	%	%
EP-076A : Polynuclear Aror	natic Hydr	ocarbor	IS				
Acenaphthene	<0.25	10	92	108	100	16	0 - 35
Pyrene	<0.25	10	99.7	110	105	9.82	0 - 35
EP-076S : PAH Surrogates							-
2-Fluorobiphenyl	122%	4	89.2	102	95.6	13.4	0 - 35
Anthracene-d10	113%	4	92.3	102	97.2	9.98	0 - 35
4-Terphenyl-d14	116%	'4	95.9	98.1	97	2.27	0 - 35

COMMENTS:

The RPD control limits are fixed.
 *: RPD falls outside the recommended control limit.

Rec 23/3/2001

Draft

Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor

Indec Consulting

PPK Environment & Infrastructure Pty Ltd A Parsons Brinckerhoff Company

16 March 2001 27K140D 01-0078-02

ABN 80 078 004 798

PPK House 101 Pirie Street Adelaide SA 5000 PO Box 398 Adelaide SA 5001 Australia

Telephone: (61 8) 8405 4300 Facsimile: (61 8) 8405 4301

NCSI Certified Quality System to ISO 9001

©PPK Environment & Infrastructure Pty Ltd [2001]

This document is the property of PPK Environment & Infrastructure Pty Ltd ("PPK"). This document and the information contained in it are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PPK. PPK makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information contained in it.

State Science Production

Ì

Author:	·····
Reviewer:	
Approved by:	
Signed:	
Date:	
Distribution:	

Our Reference 27K140D/SCG/cc

16 March 2001

Mr Colin Denton Indec Consulting 300 Flinders Street ADELAIDE SA 5000

PPK Environment & Infrastructure Pty Ltd PPK House 101 Pirie Street Adelaide SA 5000 GPO Box 398 Adelaide SA 5001 Australia Telephone +61 8 8405 4300 Facsimile +61 8 8405 4301 Email adelaide@ppk.com.au

ABN 80 078 004 798 NCSI Certified Quality System to ISO 9001

Dear Colin

Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor

PPK is pleased to provide this draft addendum report to answer the queries raised by URS in their preliminary review of the reports associated with the investigation and remediation works at the Canberra railway station yards and rail corridor.

If you have any queries please do not hesitate to call me on the above number.

Yours sincerely

Stuart Glenn Principal, Environmental Division PPK Environment & Infrastructure Pty Ltd

Contents

Page	Nι	ıml	ber
------	----	-----	-----

1.			1
2.			2
	2.1	Groundwater Monitoring to Confirm Fate Modelling	2
		2.1.1 Old Refuelling Depot2.1.2 Vacant Landfill Site	2 3
	2.2	Former Railway Turntable	3
	2.3	Abattoir USTs	4
	2.4 Landfill Area (East of Jerrabomberra Creek)		4
	2.5 Asbestos		4
	2.6	2.6 Oily Water Drains	
	2.7	2.7 Oil Staining on Soils	
	2.8	Petroleum Hydrocarbon Vapours	4

Appendices

Appendix A	URS Summary Review
, pponomini	

Appendix B Analytical Results

Appendix C Photographs

Appendix D Canberra Rail Station and Former Municipal Landfill Area, Groundwater Monitoring Well Locations

1. Introduction

PPK Environment & Infrastructure Pty Ltd (PPK) was commissioned by Indec Consulting (Indec), on behalf of Australian National under Contract 1013, to undertake a series of environmental investigations and remedial works at the Canberra railway station yards and rail corridor as part of the Commonwealth's environmental remediation program. These investigations and remedial works were comprehensively reported in December 2000 in the document titled "Report on Further Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor" (PPK Ref 27K140D Document No. 99-0885-00).

Following a review of this report by URS a number of issues and clarifications were requested. These were detailed in a report dated 16 November 2000 and titled Review of Canberra Railyards (see Appendix A).

Following this review, PPK undertook a series of further investigations, inclusive of confirmatory groundwater monitoring, increased analyte testing and site inspections. This work was completed on 22 December 2000.

This report relates to these latest investigations undertaken throughout December 2000.

2. Summary of Issues Raised

PPK

2.1 Groundwater Monitoring to Confirm Fate Modelling

Solute transport modelling was undertaken and reported in the original PPK report to determine the likely migration of identified dissolved–phase groundwater contamination. In general, PPK determined that dissolved components migrated hydraulically down-gradient in the local groundwater toward Jerrabomberra Creek. It was nominated that dispersive effects during transport potentially would result in a dilution of contaminant concentrations. And that transport of any contaminant plume would also be retarded by the effects of sorption to organic matter and other aquifer material.

To forecast actual impacts, PPK undertook one dimensional (1-D) solute transport modelling as presented by van Genuchten and Alves ('Analytical Solutions of the One-dimensional Convective-Dispersive Solute Transport Equation', 1982, US Department of Agriculture technical Bulletin No.1661). Results of the modelling were clearly defined in Section 9.3 of the abovementioned PPK report. The conclusion drawn from this modelling suggested that any identified groundwater contamination would rapidly dilute, migrate very slowly and not pose any risk to Jerrabomberra Creek.

A review of PPK's findings undertaken by URS noted that additional objective data, in the form of groundwater monitoring results, would be of benefit to confirm the model predictions. This was specifically in relation to two potential areas, namely the former refuelling depot and vacant dump site.

2.1.1 Old Refuelling Depot

Modelling of the identified PSH groundwater contamination plume indicated no risk of impacts to Jerrabomberra Creek in excess of the established assessment criteria for the protection of fresh water ecosystems. This was confirmed at the time of modelling by groundwater monitoring between the source and Jerrabomberra Creek.

To further confirm the model predictions, another monitoring round of wells around the identified source, inclusive of GW104, GW210, GW310, GW13, GW301, GW307, GW305, GW303, GW204, GW311, GW203 and GW105 was undertaken. All results recorded were below laboratory detection limits (see laboratory analyses Appendix B).

This monitoring round objectively reconfirms the model predictions of minimal movement of the identified plume and the absence of risk to Jerrabomberra Creek, sited some 800 m from the source.

2.1.2 Vacant Landfill Site

The previous PPK report identified one localised source of TPH at the northern end of the former waste disposal site. Fate and transport modelling indicated that the identified concentration was not likely to impact on the adjacent Jerrabomberra Creek.

The URS review nominated two areas of clarification, in respect of the vacant landfill site, namely the need for further confirmatory analyses associated with an identified TPH plume and the need for typical leachate analyses within the groundwater.

A further round of groundwater sampling and analysis was undertaken to address these review points.

TPH:

Previous testing had revealed a single sample recovered from the north western portion of the site with concentrations of dissolved-phase TPH. Subsequent testing has confirmed the presence of this contamination, however it is apparently contained, with no adjacent or downgradient wells recording any indications of TPH. The latest results validate the model prediction that "TPH would not exceed 0.43 μ g/L (below the laboratory method limit of reporting) at a distance of 50 m from the source."

Leachate:

In addition to TPH, the latest round of analyses included a series of standard leachate parameters to confirm any impact resulting from any landfill materials. Wells sampled included GW109, GW206, GW114, GW313, and GW111 (see laboratory results Appendix C). Results show evidence of minor impact of the local groundwater with typical leachate parameters inclusive of elevated TDS, hardness, nitrate and ammonia. Heavy metal results were all at low concentrations or below detection limits.

Other than evidence of elevated ammonia sulphate levels in some wells no contaminants (major ions, metals, pesticides or hydrocarbons) at levels of concern for this area were identified.

In addition, the modelling of groundwater behaviour corroborates that no impacts, in excess of the assessment criteria for the protection of freshwater ecosystems, would be detected at Jerrabomberra Creek.

On this basis, no further action is required.

2.2 Former Railway Turntable

Reviewing of old ariel photographs revealed that the former rail turntable is located partially under Robbo's Pet Barn and the adjacent bituminised car parking area, this area is surrounded by groundwater wells both up and down gradient. Subsequent testing has confirmed no downgradient wells recording any indications of petroleum hydrocarbon contamination. On this basis, no further action is required.

2.3 Abattoir USTs

The former abattoir site was not part of this site assessment.

2.4 Landfill Area (East of Jerrabomberra Creek)

The former landfill area east of Jerrabomberra Creek, north and adjacent to the railway alignment, was considered to be outside of the scope of this report. This land was not considered to be AN land and was not part of this site assessment.

2.5 Asbestos

Site inspection of the potential asbestos contaminated area on 20 December 2000 revealed no evidence of residual asbestos sheeting (see Photographs Appendix C).

Based on this finding, no further action is required.

2.6 Oily Water Drains

Site inspection on 20 December 2000 confirmed the areas previously identified as potential disposal drains for oily water showed no visual evidence of oil stain or residue (see Photographs Appendix C).

Based on this latest finding, no further action is required.

2.7 Oil Staining on Soils

Previously reported oil staining, both along the fuel depot sidings and adjacent to the Shell depot, was reinspected as part of an overall site review in December 2000.

Staining was no longer in evidence along the fuel depot sidings (see Photographs in Appendix C) and significant growth of grass and other vegetation is now in evidence.

Based on this latest finding, no further action is required.

Staining associated with the Shell depot is considered a matter for Shell and outside the scope of this report.

2.8 Petroleum Hydrocarbon Vapours

PPK is drafting an environmental status report on the Canberra site, highlighting all identified areas of risk inclusive of areas with potential hydrocarbon vapours. This separate report will enable current and future users of the site to develop their own specific Safe Systems of Work.

Appendix A

URS Summary Review

TABLE OF CONTENTS

Section 1	Background and Objectives	1-1
Section 2	Summary of Work Conducted and Reviewed	2-1
Section 3	Review Findings	3-1
Section 4	Statement of Review	4-1
Section 5	Limitations to Review	5-1

SECTIONONE

The ACT Government has requested an independent audit review of the former Australian National (AN) land in Canberra. The review has been carried out by Mr. Warren Pump, a Victorian EPA Accredited Contaminated Land Auditor. The land was Commonwealth property which passed from the Commonwealth Railways to AN when the latter was formed. Since the sale of AN in November 1997 a site assessment and remediation program instigated by AN and now managed by INDEC Consulting (Indec) and funded through the Federal Government has been carried out at the Canberra Site by PPK Environment and Infrastructure (PPK). This audit has been prepared for Indec Consulting and the ACT Government to provide confidence that the necessary investigation and remedial action required for the continued use of the site for which it was last used prior to the sale date of AN has occurred.

At the time of the sale of AN the Federal Government committed funding to remediate former rail sites and property to a standard suitable for the continuing use for which the property was last used prior to the sale date. The Federal Government undertook this action regardless of whether AN or previous land owners or users caused the environmental contamination.

Indee has been appointed by the Commonwealth to manage all aspects of the remediation program. The remediation process is and has been based on a risk management basis which takes account of the commitment of the Commonwealth (in the majority of cases) to remediate sites to allow land-use consistent with ongoing use for which it was last used.

In respect of providing the ACT Government and the Commonwealth adequate levels of confidence that the environmental risks at the site have been identified and addressed an agreed sign off process has been adopted. As part of the sign off process this independent audit has been carried out, which is equivalent to a an environmental audit carried out for contaminated land in accordance with the requirements of the Environment Protection Authority of Victoria. However, this audit is not a statutory audit.

In conducting the audit, the Auditor has consider the suitability of the land, based on its environmental condition, for the following range of land uses:

- Light and heavy industrial, especially industrial processes traditionally associated with urban railways and railyards;
- Commercial activities; and
- Solid waste disposal and soil filling.

In addressing such land uses, the Auditor has formed an opinion of the existence, nature and extent of any actual material environmental harm, or threatened material environmental harm, regarding the site. The term "material environmental harm" has the same meaning as that in the ACT *Environment Protection Act 1997*.

This review is only concerned with impacts to soil and groundwater which may offer a risk to the environment or human health. The review is not concerned with operational issues at the sites, nor is it concerned with the protection of natural flora or fauna (other than those that typically exist in a highly modified form in urban railyards); soil aesthetics; dust; noise; vibration; or ground corrosivity.

The discussion below provides a brief summary of the reports prepared by PPK and the description of the works performed.

"Environmental Audit of the Australian National Facilities, Canberra Railway Station Yards and Rail Corridor", 16 March 1998 Document No. 27K009A 98-182.DOC.

This report presents the past and current activities at the site which have the potential to cause impact to the identified environmental receptors.

"Phase II Environmental Site Assessment, Canberra Railway Station and Rail Corridor", 12 November 1998, Document No. 27K140A 98-845.DOC.

This report presents the results of the first round of soil and groundwater investigations at the various areas identified during the environmental audit above. It specifically assessed the following areas:

- The fuel depots and former cement works and their impact to the railway corridor;
- The former goods shed (now Robbo's Pet Barn) and surrounding area;
- The old refueling depot;
- The main Canberra station area and surrounds;
- Leased area occupied by William Edmunds Plumbers and the Australian Railway Historical Society (ARHS);
- Vacant dump site (which is understood to have been used for uncontrolled disposal of municipal wastes); and
- Corridor between Jerrabomberra Creek and Ipswich Street.

"Report on Further Soil and Groundwater Investigations, Canberra Railway Station and Rail Corridor", 14 January 1999, Document No. 7K140B 99-014.DOC.

This report presents the results of the second (Phase IIB) round of soil and groundwater investigations at various areas identified upon completion of the initial Phase II investigations. It specifically assessed the following areas:

- Contaminated soil issues associated with the former cement works;
- Re-sampling of groundwater from monitoring wells in the railway corridor adjacent to the fuel depots;
- Installation of additional groundwater monitoring bores in the vicinity of former refueling area to delineate the extent of groundwater contamination; and
- Installation of additional groundwater monitoring bores at the vacant dump site to assess potential impacts to the Jerrabomberra Creek.

"Report on Further Environmental Site Investigation and Site remedial Works, Canberra Railway Station Yards and Corridor", 17 December 1999, Document No. 27K140C 99-0885-00.DOC.

This report presents the results of further site assessment works (soil and groundwater) and remediation (groundwater) undertaken as a result of the findings in the Phase IIB assessment. It specifically assessed the following areas:

- Human health risk assessment of soil contamination (metals) adjacent to the former cement works along the rail corridor;
- Further groundwater monitoring adjacent to the fuel depots along the eastern rail corridor;
- Installation of additional groundwater monitoring bores and groundwater remediation at the former refueling area. The assessment also included fate and transport modelling of residual groundwater contamination;
- Further test pitting, installation of additional groundwater monitoring bores and groundwater sampling at the vacant dump site. The assessment also included fate and transport modelling of residual groundwater contamination at the north-western end of the dump site;
- Investigation of underground storage tanks (USTs) at the area leased by William Edmunds Plumbers. The investigation included sampling of soils from test pits and sampling a nearby groundwater monitoring bore in a down-gradient location; and
- Investigation of fouled railway ballast removed from the vicinity of the main Canberra railway station and placed south-east of the station and south Robbo's Pet Barn. The investigation included sampling of the fouled ballast and surrounding soils and collection of groundwater samples from nearby bores in a down-gradient location.

This review is a summary of the main issues identified in the various investigations carried out across the Canberra Rail Facility. Minor non-conformances or areas where there are minor identified risks which do not impact continued railway use of the site will be included in the final audit report.

3.1 FUEL DEPOTS ADJACENT TO THE EASTERN RAIL CORRIDOR

Levels of petroleum hydrocarbon (TPHs) above the adopted criteria for continued railway use were identified adjacent to the Shell and Mobil fuel depots. These levels were at concentrations which represented petroleum hydrocarbons floating on the groundwater table (phase separated hydrocarbons – PSH). It is understood that Indec have communicated these issues to the fuel companies for further consideration.

In most cases the identified TPHs are not likely to impact upon the continued use of this facility for railway purposes. However, a combination of significant concentration of light fraction TPH compounds (C6-C9 at 46,600 ug/L) and the shallow depth to ground water (approximately 2 metres) may expose workers in the areas to potential soil vapours. An assessment of this issue is required to assess that identified receptors are not exposed to any potential risks associated with the soil vapours.

3.2 FORMER CEMENT WORKS ADJACENT TO THE EASTERN RAIL CORRIDOR

Concentrations of metals (lead and zinc) were identified at levels exceeding the adopted criteria for continued railway use. The area was limited in vertical and lateral extent (less than 10 square metres in area and within a depth of 1 metre). The concentrations of zinc were subsequently identified to be within the NEHF, 1998 assessment criteria for 'hot-spots'. The concentration of lead was compared to the health risk assessment (for lead contamination in soils) performed for the Port Pirie Rail Yards. The parameters (exposure pathways, applicable exposure factors and toxicological factors) of the risk assessment for the Port Pirie site were reviewed. The identified parameters are considered to represent a conservative scenario in terms of the Canberra site. Therefore the identified concentration of lead in soils is likely to be acceptable for continued railway use.

3.3 OLD REFUELING DEPOT

Levels of TPHs were identified in the vicinity of the former refueling area above the adopted assessment guidelines. Phase separated hydrocarbons were also noted in three of the groundwater monitoring bores. It was estimated that approximately 50 litres of PSH was floating on the groundwater table. Remediation of the PSH was undertaken using a 'pig sock' lowered into the impacted groundwater bores. The pig sock removed PSH by absorption. The last report prepared for the site documented that approximately 5 litres of PSH had been removed.

The significance of the remaining contaminated groundwater was undertaken using fate and transport groundwater modelling techniques. The modelling indicated that there is likely to be minimal risks to the Jerrabomberra Creek. Future monitoring of this area would be required to confirm the predictions of the modelling.

During assessment of this area groundwater monitoring bore GW304 reported a concentration of TPH C6-C9 at 63,000 ug/L. Assessment of the chromatogram indicated that this petroleum hydrocarbon was not derived from the same source as the former refueling area (which was

predominantly used for storage and dispensing diesel). The significance of this contamination was also assessed using the fate and transport model, which indicated that there is likely to be no future risks associated with this contamination. However, there has been no further explanation of the presence of this contamination. It is recommended that the results be reviewed to address this anomaly.

3.4 FORMER GOODS SHED

There were no significant issues associated with the operations of the goods shed which had the potential to impact the site. However, the facility was established over filled ground. The filled ground included solid and inert wastes.

3.5 MAIN CANBERRA STATION AREA

There are no current activities associated with the Canberra station which have the potential to impact continued railway use of the site. In the past ballast contaminated with TPHs was removed and geofabric liner placed to prevent future TPH leakage from the locomotives. There was no documentation provided up to the time of this review which indicated validation of the excavation was performed. However, groundwater was sampled from monitoring bores down-gradient from the area and there were no impacts identified in the groundwater.

Fouled ballast was deposited in various locations south-east of the station area. It is assumed this material was sourced during the removal of the ballast from the main Canberra station area. Assessment of the ballast material, adjacent soils and groundwater down-gradient from the area indicated that there are no significant issues which would limit continued railway use of the site.

3.6 LEASED AREAS (WILLIAM EDMUNDS PLUMBERS AND ARHS)

Site facilities are located over filled areas and are assumed to be an extension of the vacant dump area. One significant issue was identified in the area occupied within the William Edmunds site. The review identified, three underground storage tanks located north and adjacent to the main building. Assessment of the soils adjacent to the USTs and groundwater down-hydraulic gradient indicated no adverse impacts.

3.7 VACANT DUMP SITE

The results of the investigation of this area indicated the filled area varied from approximately 2m to 6m and contained predominantly domestic (solid / inert wastes) and in the later years of operation, restricted filling to building rubble (soil fill, concrete, bricks, etc.). Levels of TPHs were identified in the northern end of the dump and appeared to be localised in area. Fate and transport modelling indicated that the identified concentration is not likely to impact on the adjacent Jerrabomberra Creek. However, further monitoring of the groundwater should be undertaken to confirm the modelling outcomes.

Although no significant putrescible domestic fill was encountered during the test pitting exercise, there are indications that the groundwater quality has been impacted by leachate generated by the decomposition of putrescible wastes. Traces of cyanide were also detected in GW206 above the guidelines for protection of fresh water ecosystems. It is recommended that groundwater quality be monitored for typical landfill leachate parameters, as well as other parameters identified in previous monitoring.

3.8 CORRIDOR BETWEEN JERRABOMBERRA CREEK AND IPSWICH STREET

No significant issues were identified in this area which would impact upon continued railway use of the area.

Review of the assessment reports has highlighted that other areas have been identified which have the potential, to impact identified receptors at the site. These areas only have the potential to be an issue if significant contamination is present. These include:

- The filling of the former railway turntable. This issue was highlighted in the environmental audit report;
- USTs (now removed) were located in the former abattoir site, immediately east of Newcastle Street. It is presumed that the abattoir site in not part of the site;
- Potential for fragments of asbestos sheeting to exist in the surface soils was highlighted in the environmental audit and no assessment was performed;
- Oily wastes being disposed into the stormwater drain at the ARHS site. This issue was raised in the environmental audit report and no further assessment has been performed;
- The environmental audit report identified filling east of the Jerrabomberra Creek north and adjacent to the railway alignment. The filling, as illustrated in the aerial photo was similar to the vacant dump site area;
- Significant staining of the soils by petroleum hydrocarbons was noted along-side the fuel depot sidings during the environmental audit of the site. No further assessment of these soils was undertaken. It is assumed that the sidings are located on railway land; and
- Black oily waste was observed during the environmental audit in a drainage alignment adjacent to the Shell depot. There was no further assessment of these areas noted in the later environmental site assessment reports.
- The assessments prepared by PPK have been performed in accordance with the methods and guidelines usually employed for the assessment of potentially contaminated sites, however, there has been no comparison of the local requirements of Environment ACT and supporting legislation for the protection of the environment. The detailed audit report will reference the Environment ACT legislation and any relevant guidelines.
- In this review, the Auditor has formed an opinion of the existence, nature and extent of any actual material environmental harm, or threatened material environmental harm, regarding the site. On the basis of the information provided and reviewed, there is no evidence to suggest that the issues assessed present actual material environmental harm to exist. However, until further information can be provided, threatened environmental harm exists for the following issues:
- The potential for landfill leachate from the vacant dump site to be impacting the underlying groundwater and therefore the Jerrabomberra Creek;
- The potential for landfill leachate to be generating from the filled area east of the Jerrabomberra Creek (north and adjacent to the railway alignment) to be impacting the underlying groundwater and therefore the Jerrabomberra Creek; and
- The potential for petroleum hydrocarbon soil vapours adjacent to the Shell bulk to impact upon the identified receptors.

SECTIONFOUR

The review has indicated that there have been no issues which are likely to impact the identified continued uses of the site. However, as identified in this review, there are number of issues which require further assessment, documentation or monitoring. 'This is required to ensure receptors identified at the site (workers or the neighboring environment) are not exposed to adverse risks and to confirm that the outstanding issues identified herein are addressed and pose no impact to continued use of the site for the identified uses.

The works undertaken by the Commonwealth in respect of remediation of contamination at AN sites was constrained by an upper limiting cost. Therefore, the Commonwealth, and its advisers, have sought to optimise the effectiveness of remediation efforts at the AN sites. However, in optimising these works priorities were addressed and this may have resulted in matters at some sites falling beyond the scope of capability of the limited funds. This review has not sought to investigate the total extent of land contamination at the site reviewed, rather it has checked that the works undertaken and the results achieved were appropriately carried out within the constraints of the total number of sites to be managed.

Reliance on Data

This review has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, (the consultant) has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. (the Consultant) will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to (consultant name).

Environmental Conclusions

In accordance with the scope of services, (consultant name) has relied upon the data and has not conducted any environmental field monitoring or testing in the preparation of the report. The conclusions are based upon the data and visual observations and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Within the limitations imposed by the scope of services, the assessment of the site and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

Report for Benefit of Client

The report has been prepared for the benefit of the Client and no other party. (consultant name) assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of (consultant name) or for any loss or damage suffered by any other person or organisation arising expressed in the report. Other party in relying upon the matters dealt with or conclusions expressed in the report. Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

Appendix A References Appendix B Major Site Review Checklist and Conformance Report

Appendix C Memoranda and Proposed Report Format

INDEC CONSULTING	
MAJOR SITE REVIEW CHECKLIST AND CONFORMANCE REPORT	Page 1 of 7
Issue 1.0 Revision A	Date: 28 September 1997

The Commonwealth-of-Australia - Sign-off procedure for former Australian National Land now transferred to -The State of South Australia

Major Site Review. This checklist and conformance report has been developed in accordance with Clause 7 of the Railways Agreement signed on 30 June 1997 by the Commonwealth and South Australian Transport Ministers.

The checklist provides guidance for EPA accredited auditors, appointed as reviewers, to check the conformance of available reports for Major Sites as defined by the Commonwealth, pursuant to Clause 7 of the Agreement. In addition to the Reviewers experience the following references shall be taken into account for the purpose of the review:

- 1. Clause 7 of the Railways Agreement between the Commonwealth and the State of South Australia.
- 2. The relevant Clauses of the 'Remediation Program' being a program of works for the purposes of the Railways Agreement, and which details the requirements of the checklist.
- 3. Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, ANZECC/NHMRC, January 1992.
- 4. Protocol for the Health Risk Assessment and Management of Contaminated Sites, Contaminated Sites Monograph Series No. 2, 1993.
- 5. Identification and Assessment of Contaminated Land, Improving Site History Appraisal, Contaminated Sites Monograph Series No. 3, 1994.
- 6. Protocol for the Health Risk Assessment and Management of Contaminated Sites, Contaminated Sites Monograph Series No. 5, 1996.
- 7. Draft Australian Standard Analysis of Soils, Part 1: The Sampling of Potentially Contaminated Soil, Standards Australia, 1995.
 - 8. The Generic Work Plans for Australian National Projects, 15 November 1996.
 - 9. The covering memorandum to this checklist outlining the methodology to be applied in its use.
 - 10. The specific site scope of works developed for each site.

ASSESSOR (Name & Signature):	JOB NUMBER:	JOB TITLE:

×

INDEC CONSULTING

MAJOR SITE REVIEW CHECKLIST AND CONFORMANCE REPORT

Page 2 of 7

Issue 1.0 Revision A

Date: 28 September 1997

LIST OF REPORTS / CORRESPONDENCES	REPORT IDENTIFIER / DATE	INITIAL DOCUMENTS REVIEWED	COMMENTS ON PROVENANCE / CONTENTS / RELATIONSHIP OF DOCUMENTS
"Environmental Audit of the Australian National Facilities, Canberra Railway Station Yards and Rail Corridor".	16 March 1998 Document No. 27K009A 98-182.DOC.	A	Initial environmental audit report which was carried out to identify activities at the site which have the potential to result in contamination of the land.
"Phase II Environmental Site Assessment, Canberra Railway Station and Rail Corridor".	12 November 1998, Document No. 27K140A 98-845.DOC.	B	First phase of soil and groundwater investigations of the main issues identified in the environmental audit report.
"Report on Further Soil and Groundwater Investigations, Canberra Railway Station and Rail Corridor".	14 January 1999, Document No. 7K140B 99-014.DOC.	С	Second phase of soil and groundwater sampling to assist in delineation of the identified contamination issues.
"Report on Further Environmental Site Investigation and Site remedial Works, Canberra Railway Station Yards and Corridor".	17 December 1999, Document No. 27K140C 99-0885- 00.DOC.	D	Third phase of soil and groundwater sampling to attempt to assess the significance of the identified contamination issues and to collect additional information on the soil and groundwater quality. Assessment of 'hot spot' areas also included contaminant fate and transport modelling and applying the results of a health risk assessment of undertaken for the Port Pirie Railyard site.

INDEC CONSULTING

MAJOR SITE REVIEW CHECKLIST AND CONFORMANCE REPORT

Issue 1.0 Revision A

Date: 28 September 1997

SPECIFICATION	REFERENCE	COMMENTS	CONFORMANCE STATUS
1. Phase 1	(e.g. 'A' or '3') A, B, C, D, 3, 5	Site description and definition	S
Given scope definition, site history, and site activities, has the investigation been in accordance with Ref 5. Specifically, were the following adequately addressed for the potential risks at the site:	, , , , , , , , , , , , , , ,	There has been a detailed definition of the site description in Ref A, s2.1. However the site plan provided in Ref A Appendix B does not clearly identify the site boundary. The site boundary is assumed to be as illustrated in Ref B Appendix B, which illustrates a bold outline of the boundary of the site which is being investigated.	
- Site description and definition		Current/Previous owners occupiers & users	s
- Current/Previous owners occupiers & users		Ref A s2.0 and s3.0 has identified the history of the site adequately to	
- Raw materials/products (inc. storages)		assist in identifying activities which have the potential to result in land contamination of the site.	
- Wastes produced/disposal locations		contamination of the site.	
- Discharges and spills to land and water		Raw materials/products (inc. storages)	
 Site geology, hydrogeology & catchment characteristics 		Ref A s5.4 has identified areas of the site where raw materials and	S
- Adjacent land uses.		products have been stored. It is also noted that the site history assessment has been able to identify the areas of the site which stored significant materials storages (such as the old refuelling depot).	
			S
		Wastes produced/disposal locations	
		Ref A s 5.4 attempts to identify the areas which have been highlighted to PPK during the environmental audit. It is assumed that all the areas known to former employees of AN and associated areas have been pointed out to PPK. It is also possible that previously (historic) unidentified areas, containing filling, may exist in minor quantities which have not been identified during the various phases of the assessment. However, it is unlikely that these areas are likely to impact upon continued railway use of the site.	

Page 3 of 7

			S
		Discharges and spills to land and water	
		Ref A s5.4 highlights the various areas of the site where discharges and spills have occurred at the site. As indicated above, there maybe other areas not highlighted to PPK during this assessment. These areas (if any) are likely to be minor issues and are unlikely to impact upon continued railway use of the site.	
			S
		Site geology, hydrogeology & catchment characteristics Ref A s5.1, 5.2, 5.3 discuss the environmental setting of the site including the topography, local geography and hydrogeology, local soil types and geology. There is no reference to an assessment of retained records for existing and nearby groundwater bores. It is noted however, in Ref 4 s9.3.3 there is a reference that there are licensed groundwater abstraction wells. Also it is from the investigation phases of the assessment that regional groundwater flow direction from all areas of the site is towards the Jerrabmberra Creek. There is no reference to the likely beneficial use of the groundwater, however, this is further discussed in Ref B, C and D.	S
		Adjacent land uses.	
		There is no specific section in Ref A which outlines the surrounding landuses. However, these have been highlighted in various sectons throughout the whole report. There is a specific section in Ref B s3.0 and s3.2 which addresses the specific uses surrounding the site.	
		Summary	
		Overall, the issues addressed in the Phase I assessment generally comply with the requirements of Ref 5.	
2. Phase 2 Given the continued use of the site, scope definition, and works from Phase I, was the Phase 2 program adequate from a risk based perspective. Did the sampling program:	B, C, D, 8, 10	The scope of work performed and documented in Refs B, C & D generally conformed with the requirements of Ref 8 & 10. However, the Phase I has highlighted other areas which have the potential to impact identified receptors at the site. These have not been further investigated as part of the Phase 2 and include:	MNC

- Meet the requirements of Ref. 8	highlighted in the environmental audit report;
 Meet the requirements of Ref. 10 Adequately define the vertical and lateral extent of identified potential contaminants. 	 USTs (now removed) were located in the former abattoir site, immediately east of Newcastle Street. It is presumed that the abattoir site in not part of the site;
	 Potential for fragments of asbestos sheeting to exist in the surface soils was highlighted in the environmental audit and no assessment was performed;
	 Oily wastes being disposed into the stormwater drain at the ARHS site. This issue was raised in the environmental audit report and no further assessment has been performed;
	 The environmental audit report identified filling east of the Jerrabomberra Creek north and adjacent to the railway alignment. The filling, as illustrated in the aerial photo was similar to the vacant dump site area;
	 Significant staining of the soils by petroleum hydrocarbons was noted along-side the fuel depot sidings during the environmental audit of the site. No further assessment of these soils was undertaken. It is assumed that the sidings are located on railway land; and
	 Black oily waste was observed during the environmental audit in a drainage alignment adjacent to the Shell depot. There was no further assessment of these areas noted in the later- environmental site assessment reports.
	These areas only have the potential to be an issue if significant contamination is present.
	During assessment of the former refuelling area groundwater monitoring bore GW304 reported a concentration of TPH C6-C9 at 63,000 ug/L. Assessment of the chromatogram indicated that this petroleum hydrocarbon was not derived from the same source as the former refueling area (which was predominantly used for storage and dispensing diesel). The significance of this contamination was also

assessed using the fate and transport model, which indicated that there is likely to be no future risks associated with this contamination. However, there has been no further explanation of the presence of this contamination. It is recommended that the results be reviewed to address this anomaly.	. ,
Ref B s4.0 (first bullet point) makes reference to "heavy metals and PAHs from power station foundry operations and past on-site disposal of foundry wastes". There has been no further reference to this point in any other of the reports and there has been no assessment of this identified in the reports.	

-

t

INDEC CONSULTING

MAJOR SITE REVIEW CHECKLIST AND CONFORMANCE REPORT

-

Page 4 of 7

Issue 1.0 Revision A

1.1

Date: 28 September 1997

SPECIFICATION	REFERENCE (e.g. 'A' or '3')	COMMENTS	CONFORMANCE STATUS
3. Soil Sampling Grid/Pattern On the basis of questions 1 and 2, did the sampling grid or pattern adequately define contaminant issues and therefore provide for a baseline set of data for the site.	B, C, D, 3, 7, 8 & 10	 Based on the areas investigated during the Phase 2 assessments (Ref B, C, D) and the requirements of Refs 3 & 7 the sampling programs undertaken were satisfactory to provide a baseline set of data for the issues investigated. As mentioned in Question 2 above, there are number of issues identified where there was no further clarification or assessment documented in the Phase 2 reports (Refs B, C, D). Other minor issues to note include: 	S
		 Ref D s7.6.1, there were test pit logs provided for the excavations around the USTs adjacent to William Edmunds Plumbers. 	MNC
4. Analytes Given the potential sources/contaminating activities identified in Phase 2, were the range of analytes reported appropriate.	B, C, D, 3, 7, 8 & 10	 In most cases investigated the analytes selected were appropriate. However, the analyte list in the following areas is considered to be deficient : The main vacant dump site. Although no significant putrescible domestic fill was encountered during the test pitting exercise, there are indications that the groundwater quality has been impacted by leachate generated by the decomposition of putrescible wastes. Traces of cyanide were also detected in GW206 above the guidelines for protection of fresh water ecosystems. It is recommended that groundwater quality be monitored for typical landfill leachate parameters, as well as other parameters identified in previous monitoring. Typical landfill leachate parameters include COD, BOD, Nitrate (N), Ammonia, pH, Kjeldahl nitrogen, sulphate, phosphate, major anions and cations (it is noted that some of these parameters were tested). Ref B, s5.3 review of the COCs indicated that no soil samples 	MNC

		 were analysed for VOCs or cyanide. Ref B, C & D, there is no evidence in the reports that trip blank samples were collected and placed in sample coolers for primary samples being analysed for VOCs (such as BTEX). 	MNC	
 Groundwater Investigations Were the identified potential groundwater 	B, C, D, 3, 5, 6, 7, 8 & 10	Identification of beneficial uses Assessment of the groundwater beneficial use has been carried in general accordance with the recognised guidelines.	S	
 problems adequately investigated: In terms of procedures used (drilling techniques, well construction etc.) In terms of definition of lateral and vertical extent of identified contaminant plumes. 		Bore location and construction techniques The location and construction of the bores has been carried in general accordance with the nominated references for the assessment of LNAPLs. There was no evidence during the assessment that DNAPLs exist at the site.	S	an gara
 Have beneficial use(s) of the groundwater been adequately defined. Correct well construction used? (taking into account possible presence of LNAPL's & DNAPL's 		Groundwater levels, contours and flow direction Assessment of the interpreted groundwater levels, contours and flow directions has indicated that the standing water level (SWL) reduced lelels (RLs) do not correlate with the contours interpreted in the various groundwater maps provided in Refs B & D. The assumed groundwater flow directions are generally correct. However, there are a number of localised variations in the levels and flow directions noted which effect the groundwater flow gradients, and	MNC	
		flow directions noted which effect the groundwater flow gradients, and those assumed in the groundwater modelling. There was no information Refs B, C, D to suggest that the groundwater bores were surveyed to AMG coordinates. It is assumed that the bores were surveyed to locate their position.		

. .

•

. . . . ¢

INDEC CONSULTING

MAJOR SITE REVIEW CHECKLIST AND CONFORMANCE REPORT

Issue 1.0 Revision A

Date: 28 September 1997

æ

SPECIFICATION	REFERENCE	COMMENTS	CONFORMANCE
	(e.g. 'A' or '3')		STATUS
6. Groundwater Remediation Where groundwater contamination was identified, were the investigations sufficient to enable development of appropriate groundwater remediation strategies, eg.:	D, 1, 2, 3, 6, 8 & 10	Levels of TPHs in the area of the former refuelling area were identified containing phase separated hydrocarbons (PSHs). It was estimate that approximately 50 litres of PSH was floating on the groundwater table. Removal of the PSH was performed using a 'pig- sock' which extracted approximately 5 litres of PSH. There was no further information presented in Ref D which discussed the status of	MNC .
- Were the source identified		the remaining PSH (if any).	
 Were the variables of plume geometry clear Were aquifer characteristics adequately defined Were pilot studies, if appropriate, conducted. 		Concentrations of dissolved phase TPHs in the former refuelling area were also modelled to assess the likely fate and transport of this remaining contamination. The following comments are provided regarding modelling performed:	MNC
		• The reduced groundwater levels shown in Appendix L Ref D are satisfactory. However, four bores GW6, GW8, GW103 and GW104 and GW105 were gauged and sampled on the 1/3/1999 and 18/8/1999 while the remained were sampled around 15/5/1999. The levels from borés GW6, GW8, GW103, 104 and 105 taken on the 18/8/1999 were used against other bores dated 15/5/1999. The effect on the data are not considered to be too significant but it indicted loose data presentation;	
:		• The water levels recorded on the Groundwater Field Parameter sheets (Appendix I, Ref D) are reported as Depth to groundwater from TOC (m). In the table of Ref D Appendix L (Well Gauging Data) some of the measurements are reported as Top of Survey Point and some are reported as Top of Casing – there is no record of which is which on the parameter sheets;	
		• When the reduced water levels are plotted against their corresponding bores and groundwater contours are re-drawn, the groundwater contour maps for both the Figures 8 and 9 (Ref	

,

1

Page 5 of 7

	D) are vastly different and the contours shown on these Figures in the report greatly oversimplify the data reported. While this may have no major impact on the final outcome (because the hydraulic conductivity of the aquifer is so low) the figures do not illustrate "actual" groundwater flow lines (direction and length of flow lines) – importantly from areas of contamination where groundwater mounding has an impact;
	 Hydraulic conductivity testing of five (5) bores across an area as large as the site shown in Figure 8 (Ref D) is not considered to be adequate to get a representative range of aquifer parameters – this is not a major problem in this case as the result of the five tested are within one order of magnitude;
	The use of conservative values for both the hydraulic conductivity, hydraulic gradient and decay constant for the 1-D model is acceptable;
	 The sensitivity analysis of the 1-D model is only limited to two dispersion coefficient values, it would have been good to see some analysis of effects of different hydraulic conductivities since there were only a relatively small number of hydraulic conductivity test done on the site;
	 The initial source concentration for the model was set at 10,000 units. Testing reported free product in some bores. It is likely that dissolved phase THP in groundwater below the free phase would have TPH concentrations at saturation, i.e. at least one order of magnitude greater than that modelled. Further sensitivity testing of the model is recommended at the higher TPH concentrations.
· · ·	 Based on the outcome of the above recommendation, the fate of a contamiantion plume should be assessed in terms of the groundwater flow lines resulting from actual site conditions not a generalised groundwater flow pattern (as shown in Figures 8 & 9), the conclusions should then be made an that basis.
	Ref B s6.8, Ref C s2.3.1, there is reference to elevated levels of mercury and lead in a number of the groundwater bores, but there is no further explanation of the possible source of these chemicals. It was also noted in some cases at concentrations above the drinking

		water guidelines and protection of aquatic ecosystem guidelines.	
 7. QA/QC Procedures Were appropriate QA/QC procedures, (inc. work plan reqt's) followed, (see Table A3.1 of Generic work plan), including: Chain of custody forms included Duplicates, (sufficient & acceptable limits) Interlaboratory samples accept. Limits 10% Trip blanks, (acceptable limits (20% mean for background samples or PQL) 	B, C, D, 3, 7, 8 & 10	 The results of the assessment of the QA/QC program generally satisfied the requirements outlined in the reference documents. However, the following comments are provided: Ref C, 10% of the samples were checked for analysis within the nominated holding times. It was identified that some samples were analysed outside of the holding times. Ref C Appendix H, the result for the rinsate blank (report no. 8E02410 page 22 of 24 Lab No, 65606) which is assumed to be a rinsate sample from groundwater sampling equipment had 	MNC
 Interlaboratory samples accept. Limits 10% Trip blanks, (acceptable limits (20% mean for background samples or PQL) NATA accredited methods 			

.

۰. ۲

 $\sim \gamma^{\mu}$

•

INDEC CONSULTING

MAJOR SITE REVIEW CHECKLIST AND CONFORMANCE REPORT

Issue 1.0 Revision A

Date: 28 September 1997

SPECIFICATION	REFERENCE	COMMENTS	CONFORMANCE
	(e.g. 'A' or '3')		STATUS
8Investigation Levels Were the soil and groundwater analytical results compared with appropriate guideline concentrations, eg.:	B, C, D, 3, 5, 6, & 8.	Comparison of the results of the soil and groundwater samples with the relevant guideline levels were generally within the requirements of the reference documents. However, the following comments are provided: • Ref B s6.7. It was assessed that groundwater quality would be	MNC
- Definition of potential receptor confirmed (industrial workers in most cases)		suitable for drinking water purposes on the basis of TDS. The guidelines adopted in Ref B are "Australian Drinking Water	WINC
- Appropriate guidelines selected		Standards (Draft 1994/Draft 1995). The current suggested guidelines for drinking water purposes are understood to be the	۴.
- Comparison of analytical results adequate.		"NHMRC/ARMCANZ 1996 Drinking Water Health & Aesthetic	
- 'Outliers' properly addressed		Guidelines". It was later identified that the later criteria were used in Ref D.	
		• Ref B s6.7. It was also assessed that for groundwater discharging to the aquatic environment of the Jerrabomberra Creek, the groundwater quality would also be compared with to the ANZECC Australian Water Quality Guidelines for Fresh and Marine Waters (Livestock and Irrigation Standards). The guidelines suggested for groundwater discharging to fresh water ecosystems (which is understood to be the case for the Jerrabomberra Creek) are the ANZECC Australian Water Quality Guidelines - Protection of Aquatic Ecosystems (Fresh Water).	MNC
		• There was no comparison of the soil results with Environmental B levels for the purpose of assessing the impact on ecological receptors. However, given that the site environment is likely to be significantly modified and that there are unlikely to be any significant ecological receptors, this is not likely to be an issue.	
		 Ref D 7.1.3, an assessment criteria for TPH (C10-C36) in groundwater of 5,000 ug/L has been used. It is referenced in Ref D s6.6.2 that the DIL for groundwater would be used and the 	MNC

Page 6 of 7

.

		actual criteria for TPH C10-C36 is 600 ug/L in groundwater.
9Phase 3 Remediation Strategies	D, 1, 2, 3, 8 &	Refer to Question 6 above.
 For identified contamination, were/are phase 3 remediation strategies appropriate, eg.: Were target clean-up criteria appropriate Did the remediation strategies offer reasonable technical solutions to identified contamination. If remediation not yet complete: will the remediation technology being adopted achieve the final remediation goal in the time frame proposed. Factors: time, area, likely residual contamination. 	10.	

:

. ,

``

INDEC CONSULTING

MAJOR SITE REVIEW CHECKLIST AND CONFORMANCE REPORT

Issue 1.0 Revision A

Date: 28 September 1997

SPECIFICATION 10 Health and Ecological Risk Assessment Given the identified receptors to be protected, (usually on-site rail workers, but being cognisant of possible off-site impacts), were quantitative/ semi-quantitative risk assessment works appropriate, specifically: Have all COC been considered Are assessment criteria appropriate All major exposure and pathways covered Model inputs appropriate Toxicological data suitable Exposure parameters appropriate Ecological and health receptors considered Discussion of uncertainly included? Where appropriate to the scope, have aesthetic issues including odours been adequately addressed. 	REFERENCE (e.g. 'A' or '3') D, 1, 2, 3, 4, 6, 8 & 10	COMMENTS Concentrations of metals (lead and zinc) were identified at levels exceeding the adopted criteria for continued railway use. The area was limited in vertical and lateral extent (less than approximately 10 square metres in area and within a depth of 1 metre). The concentrations of zinc were subsequently identified to be within the NEHF, 1998 assessment criteria for 'hot-spots'. The concentration of lead was compared to the health risk assessment (for lead contamination in soils) performed for the Port Pirie Rail Yards. The parameters (exposure pathways, applicable exposure factors and toxicological factors) of the risk assessment for the Port Pirie site were reviewed. The identified parameters are considered to represent a conservative scenario in terms of the Canberra site. Therefore the identified concentration of lead in soils is likely to be acceptable for continued railway use.	CONFORMANCE STATUS
 11 Validation Programs Following remedial works, have appropriate validation programs been implemented/proposed for the Phase 3 works, specifically: Sampling pattern Sample frequency soils Depth of Samples Groundwater samples Analytes and levels of detection QA/QC practices OK 	D, 1, 2, 3, 4, 6, & 10	There are three areas where significant concentration of TPHs were identified and fate and transport modelling was performed to address the significance of the insitu contamination. These include the dissolved phase TPH 'hot spot' in the northern end of the landfill, the dissolved phase TPH area associated with the former refuelling area and the dissolved phase (THP C6-C9) hot spot in north and adjacent to the former refuelling area. Ref D has provided no further comments on the remaining PSH which may remain in the former refuelling area and the significance of this contamination.	MNC

>

Page 7 of 7

	There has been limited follow-up monitoring in the case where	MNC
	dissolved phase TPHs have been assessed by modelling the likely	
1	fate and transport of the remaining contamination.	

. . .

•

C +61	8	8641	2496
--------------	---	------	------

INDEC ENV MGMT →→→ PPK

Page 1		FAX TRA	NSMISSION
		FAX Tra	ansmission
Attention:	™ Stuart Glenn	INDE cons	C sulting
	er er		-
Company:	ΡΡΚ	email; davi	A.C.N. 065 594 803 PO Box 2264 Port Augusta SA 5700 Tel: (08) 86412438 d.miller@Indec.com.au
To Fax No:	(08) 8405 4301	From Fax No:	08 8641 2496
From:	David Miller	Time:	on and 1 7420
Date;	20-Nov-00	No of Pages: 8	
Topic:	Major Site review – Canberra.	· · · · · · · · · · · · · · · · · · ·	

Hello Stuart,

νų

٥

æ

11:37

Attached is an edited version of the URS Executive Summary with those issues we discussed highlighted. Would you please liase with Warren Pump at URS, Melbourne to resolve these issues. I would appreciate your prompt response to this issue so the final report is not delayed, Warren will be on holidays for a week beginning Thursday.

Records Schedule 2.2(a)(ii)

David

Ppk065,doc

Please ring (08 8641 2438) if all is not legible

Fax Transmit To: Javid Miller well the DCT Roverment NIJBC Constituing 16 November 2000 ing for the Ca Page 2 of Rea Tim a`a BEVIEW OF CANBERRA and chyple to conduct Can 1. Introduction Gout

Trade Covernment has requested an independent audit review of the former Australian National (AN) land in Canberra. The review has been carried out by Mr. Warren Pump, a Victorian EPA Accredited Comminated Land Auditor. The land was Commonwealth property which passed from the Commonwealth Railways to AN when the latter was formed. Since the sale of AN in November 1997 a site assessment and remediation program instigated by AN and now managed by INDEC Consulting (Indec) and funded through the Peteral Commonwealth Government has been carried out at the Canberra Site by PPK Environment and Infrastructure (PfK). This andit has been prepared for the Indec Consulting and the AMF Government to provide confidence that the necessary investigation and remedial action required for the cor tinued use of the site for which it was last used prior to the sale date of AN has occurred.

Background

NOT

2.

Communelly .

At the time of the sale of AN the **Exter**al Government committed funding to remediate for ner rail sites and property to a standard suitable for the continuing use for which the property was last used prior to the sale date. The **Exter**al Government undertook this action regardless of whether AN or previous land owners or users caused the environmental contamination.

Indee has been appointed by the Commonwealth to manage all aspects of the remediation program. The remediation process is and has been based on a risk management basis which takes account of the commitment of the Commonwealth (in the superior basis) to remediate sites to allow land-use consistent with ongoing use for which it was last used.

3. Scope of Work

In the providing the ACT Government and the Commonwealth adequate to vels of confidence that the enderminental risks at the site have been intentified and addressed an acteed sign off process has been adopted. As part of the sign off process has independent availt has been carried out, which is equivalent to a an environmental audit carried out for contaminated land in accordance with the requirements of the Environment Protection Authority of Victoria. However, this audit is not a statutory audit.

In conducting the audit, the Auditor has consider the suitability of the land, based on its environmental condition, for the following range of land uses:

- Light and heavy industrial, especially industrial processes traditionally associated with urban railways and railyards;
- Commercial activities; and
- Solid waste disposal and soil filling.

In addressing such land uses, the Auditor has formed an opinion of the existence, nature and extent of any actual material environmental harm, or threatened material environmental harm,

	What IVROJECTS SOUTHOL TO IL PIGINAUDIT REVIEW, DOC		
ARRING AND ARRIVAL ARRIVA	A CONTRACTOR OF THE OWNER OWNE		
INDEC CARLEC	620 E128 80 3 65:01 00, 11/02		

FAX NO. : 0886758399

Fax Transmittal

To: Javid Miller INDEC Consulting 16 November 2000 Page 3

regarding the site. The term "material environmental harm" has the same meaning as that in the ACT Environment Protection Act 1997.

This review is only concerned with impacts to soil and groundwater which may offer a risk to the environment or human health. The review is not concerned with operational issues at the sites, nor is it concerned with the protection of natural flora or fauna (other than those that typ.cally exist in a highly modified form in urban railyards); soil aesthetics; dust; noise; vill ration; or ground corresivity.

Summary of Work Conducted and Reviewed

The discussion below provides a brief summary of the reports prepared by PPK and the description of the works performed.

"Environmental Audit of the Australian National Facilities, Canberra Railway Station Yards and Rail Confider", 16 March 1998 Document No. 27K009A 98-182.DOC,

This report presents the past and current activities at the site which have the potential to cause inplact to the identified anvironmental receptors.

"Phase II Environmental Site Assessment, Canberra Railway Station and Rail Corridor", 12 November 1998, Document No. 27K140A 98-845.DOC.

These report presents the results of the first round of soil and groundwater investigations at the various areas identified during the environmental audit above. It specifically assessed the following areas:

- The fuel depots and former cement works and their impact to the railway corridor;
- The former goods shed (now Robbo's Pet Barn) and surrounding area;
- The old refueling depot;
- The main Canberra station area and surrounds;
- Leased area occupied by William Edmunds Plumbers and the Australian Railway Historical Society (ARHS);
- Vucant dump site (which is understood to have been used for uncontrolled disposal of municipal wastes); and
- Corridor between Jerrabomberra Creek and Ipswich Street.

"Report on Further Soil and Groundwater Investigations, Canberra Railway Station and Rail Corridor", 14 January 1999, Document No. 7K140E 99-014.DOC,

This report presents the results of the second (Phase IIB) round of soil and groundwater investigations at various areas identified upon completion of the initial Phase II investigations. It specifically assessed the following areas:

Contaminated soil issues associated with the former cement works;

•		ANTER REPORT OF A CARLIER INTERACTOR (MICHIER, DOG
800/2002	INDEC ENA WORL *** ENA INDEC VDF	9872 TV98 8 T9+23 82:TT 00. TT/4T
Z00 团	INDEC CNSLTG.	2620 9128 80 2 07:00 10. TI/02

6628373880 : , ON XA7

MILLION MALE ALAN A MARKED BAR

Fax Transmittal

To, David <u>Miller</u> INTEC Consulting 16 November 2000 Page: 4

- Re-sampling of groundwater from monitoring wells in the railway corridor adjacent to the fuel depots;
- Installation of additional groundwater monitoring bores in the vicinity of former refueling area to delineate the extent of groundwater contamination; and
- Installation of additional groundwater monitoring bores at the vacant dump size to assess potential impacts to the Jerrahomberra Creek.

"Report on Further Environmental Site Investigation and Site remedial Works, Canberra Railway Station Yards and Corridor", 17 December 1999, Document No. 27K140C 99-0885-00.DOC,

This report presents the results of further site assessment works (soil and groundwater) and remediation (groundwater) undertaken as a result of the findings in the Phase IIB assessment. It specifically assessed the following ateas:

- Human health risk assessment of soil contamination (metals) adjacent to the former coment works along the rail consider;
- Further groundwater monitoring adjacent to the fuel depots along the eastern rail comidor,
- Installation of additional groundwater monitoring bores and groundwater remediation at the former refueling area. The assessment also included fate and transport modelling of residual groundwater contamination;
- Further test pitting, installation of additional groundwater monitoring bores and groundwater sampling at the vacant dump site. The assessment also included fate and transport modelling of residual groundwater contamination at the nonthwestern end of the dump site;
- Investigation of underground storage tanks (USTs) at the area leased by William Edmunds Plumbers. The investigation included sampling of soils from test pits and sampling a nearby groundwater monitoring bore in a down gradient location; and
- Investigation of fouled milway ballast removed from the vicinity of the main Canberra railway station and placed south-east of the station and south Robbo's Pet Barn. The investigation included sampling of the fouled ballast and surrounding soils and collection of groundwater samples from nearby bores in a down-gradient location.

5. Review Findings

This review is a summary of the main issues identified in the various investigations carried out across the Canberra Rall Facility. Minor non-conformances or areas where there are minor identified risks which do not impact continued railway use of the site will be included in the final audit report.

800/100	THY ENA INDEC VDP	INDE ANY DEGNI	MABLIVACIESANAS	DIT-011-0101/ALDIT REVIEW,DOC
		······································		87:11 00, 11/41
600		INDEC CNELLC.	3 08 8512 0383	17:00 JUL 00, IT/07
2:458W 64	Nov. 22 2000 08	6628379880 : .	אטאא האנא אס. דאא אס.	FROM : OASIS CAFE & CAR

URS

Fax Transmittal

Te: David Miller INDBC Consulting 16 Mayember 2000 Peist 5

5.1 Fuel depots adjacent to the eastern rail corridor

Levels of perioleum hydrocarbon (TPHs) above the adopted criteria for continued railway use were identified adjacent to the Shell and Mobil fuel depots. These levels were at concentrations which represented perioleum hydrocarbons floating on the groundwater table (plase separated hydrocarbons – PSH). It is undetstood that Indeo have communicated these issues to the fuel companies for further consideration.

In most cases the identified TPHs are not likely to impact upon the continued use of this fau lity for railway purposes. However, a combination of significant concentration of light fraction TPH compounds (C6-C9 at 46,600 ug/L) and the shallow depth to ground water (approximately 2 metres) may expose workers in the areas to potential soil vapours. An assessment of this issue is required to assess that identified receptors are not exposed to any potential risks associated with the soil vapours.

5.2 Former coment works adjacent to the eastern rail comidor

Concentrations of metals (lead and zinc) were identified at levels exceeding the adopted criteria for continued railway use. The area was limited in vertical and lateral extent (less than 10 square metres in area and within a depth of 1 metre). The concentrations of zinc were subsequently identified to be within the NEER, 1998 assessment criteria for 'hot-spots'. The concentration of lead was compared to the health risk assessment (for lead contamination in soils) performed for the Port Pirie Rail Yards. The parameters (exposure pathways, applicable exposure factors and toxicological factors) of the risk assessment for the Port Pirie sits were reviewed. The identified parameters are considered to represent a conservative scanario in terms of the Canberra site. Therefore the identified concentration of lead in soils is likely to be acceptable for continued railway use.

5.5 Old refueling depot

Levels of TPHs were identified in the vicinity of the former refucing area above the adopted assessment guidelines. Phase separated hydrocarbons were also noted in three of the groundwater monitoring bores. It was estimated that approximately 50 litres of PSH was floating on the groundwater table. Remediation of the PSH was undertaken using a 'pig sock' lowered into the impacted groundwater bores. The pig sock removed PSH by at corption. The last report prepared for the site documented that approximately S litres of PSH had been removed.

The significance of the remaining contaminated groundwater was undertaken using fate and transport groundwater modelling techniques. The modelling indicated that there is likely to be minimal risks to the Jerrahomberra Creek. Future monitoring of this area would be required to confirm the predictions of the modelling.

During assessment of this area groundwater monitoring bore GW304 reported a concentration of TPH C6-C9 at 63,000 ug/L. Assessment of the chromatogram indicated that this petroleum hydrocarbon was not derived from the same source at the former refueling area

		-		ateliasoisciereitenitolitolitanitanitadoc							
808/800	JUA DEC	INI ANA	INDEC ENA NURL		9672 T7	98 8	T9+Q	6Z - I T	00.	11/11	
			agentificant contraction of the province of the second second second second second second second second second			•		<u> </u>			
700团			INDEC CNEFTG.				80 G	24:01	٥٥ ^١	îτ/02	
0 00:454W 62	907 ZZ 700	νoN	6628579880	: ' ON	КАЯ		ЯЯАЯ	САКАЧАИ	έΞ:	UUS SISUO	: MOA7

 \leq

Fax Transmitta

To: David Miller INDEC Consulting 16 November 2000 Page 6

(w) ich was predominantly used for storage and dispensing diesel). The significance of this - contamination was also assessed using the fate and transport model, which indicated that there is likely to be no future risks associated with this contamination. However, there has been no further explanation of the presence of this contamination. It is recommended that the results be reviewed to address this anomaly.

5.4 Former goods shed

There were no significant issues associated with the operations of the goods shed which had the potential to impact the site. However, the facility was established over filled ground. The filled ground included solid and inert wastes.

5.5 Main Canberra station area

There are no current activities associated with the Canberra station which have the potential to impact continued railway use of the site. In the past ballast contaminated with TPHs was removed and geofabric liner placed to prevent fiture TPH leakage from the locomotives. There was no documentation provided up to the time of this review which indicated val.dation of the excavation was performed. However, groundwater was sampled from monitoring bores down-gradient from the area and there were no impacts identified in the groundwater.

Fouled ballast was deposited in various locations south-east of the station area. It is assumed this material was sourced during the removal of the ballast from the main Canberra station area. Assessment of the ballast material, adjacent soils and groundwater down-gradient from the area indicated that there are no significant issues which would limit continued railway use of the site.

5.1 Leased areas (William Edmunds Plumbers and ARHS)

Sibs facilities are located over filled areas and are assumed to be an extension of the vacant dump area. One significant issue was identified in the area occupied within the William Ed nunds site. The review identified, three underground storage tanks located north and adjacent to the main building. Assessment of the soils adjacent to the USTs and groundwater down-hydraulic gradient indicated no adverse impacts.

5.7 Vacent dump site

The results of the investigation of this area indicated the filled area varied from approximately 2m to 6m and contained predominantly domestic (solid / inert wastes) and in the later years of operation, restricted filling to building rubble (soil fill, concrete, bricks, etc.). Levels of TPHs were identified in the nonhern and of the dump and appeared to be localised in area. Fate and transport modelling indicated that the identified concentration is not likely to impact on the adjacent Jerrahomberra Creek. However, further monitoring of the groundwater should be undertaken to confirm the modelling butcomes.

Although no significant putrescible domestic fill was encountered during the test pitting excretise, there are indications that the groundwater quality has been impacted by leachate

	nmelivroiectessiiissiadileddit kevigu. Boc							
800/	900 🕅	BC VDL	ANE ***	INDEC ENA RENI	9672	T798 8 T9+S	02:TT 00, TT/41	
500 2			-	INDEC CASLTG.		308 85T2	87:0T 00, 11/02	
94	MAZ4:20	25 5000	.voN	6628329880 :	.ОМ ХАЯ	SAUAN PARK	FROM : OASIS CAFE & CAF	

URS

To David Miller INEEC Consulting 16 November 2000 Pages 7

Fax Transmittal

generated by the decomposition of putrescible wastes. Traces of cyanide were also detected in (iW206 above the guidelines for protection of fresh water acceptations. It is recommended that groundwater quality be monitored for typical landfill leachate parameters, as well as other parameters identified in previous monitoring.

5.8 Corridor between Jerrabomberra Creek and Ipswich Street

No significant issues were identified in this area which would impact upon continued railway use of the area.

Review of the assessment reports has highlighted that other areas have been identified which have the potential, to impact identified receptors at the site. These areas only have the potential to be an issue if significant contamination is present. These include;

- The filling of the former failway turnable. This issue was highlighted in the environmental audit report;
- USTs (now removed) were located in the former abattoir site, immediately cast of Newcestle Street. It is presumed that the abattoir site in not part of the site;
- Potential for fragments of asbestos sheeting to exist in the sufface soils was highlighted in the environmental audit and no assessment was performed; A
- Oily wastes being disposed into the stonmwater drain at the ARHS site. This issue was
 raised in the environmental audit report and no further assessment has been performed;
- The environmental audit report identified filling case of the Ferrabounderra Creek north and adjacent to the railway alignment. The filling, as illustrated in the aerial photo was similar to the vacant dump site area;

- Significant staining of the soils by petroleum hydrocathons was noted along-side the filel depot sidings during the environmental audit of the sile. No further assessment of these soils was undertaken. It is assumed that the sidings are located on railway land; and
- Black oily waste was observed during the environmental audit in a drainage alignment adjacent to the Shell depot. There was no further assessment of these areas noted in the later environmental site assessment reports.

The assessments prepared by PPK have been performed in accordance with the methods and guidelines usually employed for the assessment of potentially contaminated sites, however, there has been no comparison of the local requirements of Environment ACT and supporting legislation for the protection of the environment. The detailed audit report will reference the Environment ACT legislation and any relevant guidelines.

In this review, the Auditor has formed an opinion of the existence, nature and extent of any scause material environmental harm, or threatened material environmental harm, regarding the site. On the basis of the information provided and reviewed, there is no evidence to suggest that the issues assessed present actual material environmental harm to exist.

800/200 2	HAN OF ALL MADE		With approximation and the construction of the					
	+++ EKA INDEC VDF	INDEC ENA REAL	8673 TP98 § T9+32	TESTE OG, IT/LT				
900 Ø		INDEC CNSLTG.	Q08 8572 0382	\$\$:0T 00, TT/02				
79 MA44:20 00	Nov. 22 20	6628329880 :	гом хая но.	FROM : OASIS CAFE & CARAVAN				

To: David Miller INDEC Consulting 16 November 2000 Page 8 Fax Transmittal

However, until further information can be provided, threatened environmental harm exists for the following issues:

- The potential for landfill leachate from the vacant dump site to be impacting the underlying groundwater and therefore the Jerrabomberra Creek;
- The potential for landfill leachate to be generating from the filled area cast of the Jerrahomberra Creek (north and adjacent to the railway alignment) to be impacting the underlying groundwater and therefore the Jerrahomberra Creek; and
- The potential for petroleum hydrocarbon soil vapours adjacent to the Shell bulk to impact upon the identified receptors.

6. Summary

In cumunary, the review has indicated that there have been no issues which are likely to impact the identified continued uses of the site. However, as identified in this review, there are number of issues which require further assessment, documentation or monitoring. This is required to ensure receptors identified at the site (workets or the neighboring environment) are not exposed to adverse risks and to confirm that the outstanding issues identified herein are addressed and pose no impact to continued use of the site for the identified uses.

Wisten Pump

Senior Principal (EPA Accredited Auditor, Contaminated Land)

			PORCEASING THE INTERNAL OF PORCE LET ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	
800/800	+++ ENA INDEC VDI	INDEC BAA ROAL	9677 TF98 8 TS+ TE:TT OB, TT/2T	
200 2		INDEC CASI'LC	57-00 TO-TO-TO-S7-0303	
89.44AM P8	Nav. 22 2000	6628579880 : JUN	FROM : OASIS CAFE & CARAVAN PARK	

Appendix B

Analytical Results

ENVIRONMENTAL AND INDUSTRIAL SERVICES DIVISION

Amdel Limited ABN 30 008 127 802

Correspondence to: P.O. Box 514 HORNSBY NSW 1630 5 Kelray Place ASQUITH NSW 2077 Telephone: (02) 9482 1922 Facsimile: (02) 9482 1734

Your Ref.

27K140D

Tax Invoice

INVOICE NO. 00064984LX

PPK65

PPK Adelaide 101 Pirie St Adelaide SA	A 5000	Our Ref. 0A01222	Date 25/01/01

Attention : Mr Mike Reynolds Project CANBERRA

Account Code : X003000X

Method	Description	Units	Unit Price	Total Amount
E0230 E0221 E0010 E4870 E4810	Description TPH C6-C9 by purge & trap TPH (C10-C36) Benzene, Toluene, Ethylbenzene & Xylene Dissolved Metals by ICP-MS Dissolved Metals by ICP-AES Mercury low level Total Cyanide Polychlorinated Biphenyls pH Conductivity Total Dissolved Solids Total Alkalinity Sulphate Chloride Total Hardness Dissolved Phosphorous Phosphorus-Total TKN Nitrate-N Nitrite-N Ammonia as N Total Organic Carbon BOD (5) Chemical Oxygen Demand		unit Price	
E0140 E0080 E0110	Phenols by GC/MS Organochlorine Pesticide Polycyclic Aromatic Hydrocarbons			
GST	Australian GST	Net (exc	clusive of GST)	
	Terms strictly 30 days nett		GST TOTAL	

Please send remittances to :-Amdel Ltd P.O. Box 338, Torrensville Plaza, S.A. 5031

This Laboratory is accredited by the National Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of accreditation. This document shall not be reproduced except in full.

Accreditation No. 1464

ENVIRONMENTAL AND INDUSTRIAL SERVICES DIVISION

Trading as Australian Analytical Laboratories Pty Ltd ACN 001 491 667

Correspondence to: PO BOX 514 HORNSBY NSW 1630 5 Kelray Place ASQUITH NSW 2077 Telephone: (02) 9482 1922 Facsimile: (02) 9482 1734

CERTIFICATE OF ANALYSIS

Contents	:
1. Cover	Page

2. Analysis Report Pages

3. OA/QC Appendix

<u>Report No.</u>	:	0A01222		3. (QA/QC Appendi
Attention	:	Mr Mike Reynolds			
<u>Client</u>	:	PPK Adelaide			
<u>Samples</u>	:	19			
Reference	:	27K140D			
Project	:	CANBERRA			
Received Samples	:	20/12/00	Instructions	:	20/12/00
Date Reported	:	15/01/01			

PLEASE SEE FOLLOWING PAGE FOR METHOD LISTING

RESULTS

All samples were analysed as received. This report relates specifically to the samples received. Results relate to the source material only to the extent that the samples as supplied are truly representative of the sample source. This report replaces any preliminary results issued. Note that for schemes indicated with * NATA accreditation does not cover the performance of this service. Three significant figures (or 2 for < 10PQL) are reported for statistical purposes only.

per D. SPKINGEK B.App.Sc. Manager Environmental Sydney amadel

E0220 TPH (C10-C36) 22/12/00 29/ E0010 Benzene, Toluene, Ethylbenzene & Xylene 27/12/00 28/ E4870 Dissolved Metals by ICP-MS 27/12/00 27/ E4810 Dissolved Metals by ICP-AES 22/12/00 27/ E48501 Mercury low level 02/01/01 03/	12/00 12/00 12/00 12/00 12/00 01/01 01/01 01/01 12/00
E0221TPH (C10-C36)22/12/0029/E0010Benzene, Toluene, Ethylbenzene & Xylene27/12/0028/E4870Dissolved Metals by ICP-MS27/12/0027/E4810Dissolved Metals by ICP-AES22/12/0027/E48501Mercury low level02/01/0103/	12/00 12/00 12/00 01/01 01/01 01/01
E4870 Dissolved Metals by ICP-MS 27/12/00 27/1 E4810 Dissolved Metals by ICP-AES 22/12/00 27/1 E48501 Mercury low level 02/01/01 03/1	12/00 12/00 01/01 01/01 01/01
E4870 Dissolved Metals by ICP-MS 27/12/00 27/12/	12/00 01/01 01/01 01/01
E48501 Mercury low level 02/01/01 03/	01/01 01/01 01/01
	01/01 01/01
E2450 Total Cyanide 03/01/01 03/	01/01
E0120 Polychlorinated Biphenyls 27/12/00 03/	12/00
E2600 pH 21/12/00 21/	
E2430 Conductivity 05/01/01 05/	01/01
E2690 Total Dissolved Solids 05/01/01 05/	01/01
E2310 Total Alkalinity 21/12/00 21/	12/00
E2720 Sulphate 21/12/00 22/	12/00
E2380 Chloride 21/12/00 22/	12/00
E2530 Total Hardness 22/12/00 27/	12/00
E2630 Dissolved Phosphorous 21/12/00 02/	01/01
E2640 Phosphorus-Total 21/12/00 12/	01/01
E2770 TKN 21/12/00 12/	01/01
	01/01
	01/01
	01/01
*E2580 Total Organic Carbon 05/01/01 05/	01/01
E2350 BOD (5) 22/12/00 27/	12/00
E2420 Chemiear Oxygen Demand	01/01
E0140 Phenols by GC/MS 04/01/01 04/	01/01
	01/01
E0110 Polycyclic Aromatic Hydrocarbons 27/12/00 03/	01/01

* Performed under NATA accreditation No. 198

Page 1 of 18 plus Cover Page

Lab No Sample Id PQL (L)	E91136 GW104	E91137 GW210	E91138 GW310	E91139	E91140
PQL	GW104	GW210	CW210		
PQL			01040	GW13	GW301
20	nd	nd	nd	nd	nd
20	nd	nd	nd	nd	nd
100	nd	nd	nd	nd	nd
100	nd	nd	nd	nd	nd
					Mont
0.5	nd	nd	nd	nđ	nd
1	nd	nd	nd	nd	nd
1	nd	nd	nd	nd	nd
3	nd	nd	nd	nd	nd
1	94%	94%	93 %	93%	91%
					·
	20 20 100 100 0.5 1 1 1 3	20 nd 20 nd 20 nd 100 nd 100 nd 0.5 nd 1 nd 1 nd 3 nd	20 nd nd 20 nd nd 20 nd nd 100 nd nd 100 nd nd 0.5 nd nd 1 nd nd 1 nd nd 3 nd nd	20 nd nd nd 20 nd nd nd 20 nd nd nd 100 nd nd nd 100 nd nd nd 0.5 nd nd nd 1 nd nd nd 1 nd nd nd 3 nd nd nd	20 nd nd nd nd nd 20 nd nd nd nd nd 20 nd nd nd nd nd 100 nd nd nd nd nd 100 nd nd nd nd nd 0.5 nd nd nd nd nd 1 nd nd nd nd nd 3 nd nd nd nd nd

PQL = Practical Quantitation Limit

Soils

Waters

: mg/kg (ppm) dry weight unless otherwise specified

LNR = Samples Listed not Received

nd = < PQL

-- = Not Applicable

: mg/L (ppm) unless otherwise specified in Method Header : mg/L (ppm) in leachate unless otherwise specified in

Leachates

Method Header

Page 2 of 18 plus Cover Page

	Lab No	E91141	E91142	E91143	E91144	E91145
	Sample Id	GW307	GW305	GW303	GW204	GW311
Analyte	PQL					
E0230 TPH in Water by P&T/GC-MS						
C6-C9 Fraction	20	nd	nd	nd	nd	nd
Ε0221 TPH in Water (μg/L)	-					x
C10-C14 Fraction	20	nd	nd	nd	nd	nd
C15-C28 Fraction	100	nd	nd	nd	nd	nd
C29-C36 Fraction	100	nd	nd	nd	nd	nd
E0010 BTEX (P&T) in Water (µg/L)						
Benzene	0.5	nd	nd	nd	nd	nd
Toluene	1	nd	nd	nd	nd	nd
Ethylbenzene	1	nd	nd	nd	nd	nd
Total Xylenes	3	nd	nd	nd	nd	nd
4-Bromofluorobenzene-SURROGATE	1	93%	90%	92%	90%	89%
						1 55⊰ +
					÷ *	
					e.	
					st.	1 ² .

PQL = Practical Quantitation Limit

Soils

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

Waters Leachates

Page 3 of 18 plus Cover Page

	Lab No	E91146	E91147	E91148	E91149	E91150
	Sample Id	GW203	GW105	DUP1	GW206	DUP2
Analyte	PQL					
E0230 TPH in Water by P&T/GC-MS	(µg/L)					
C6-C9 Fraction	20	nd	nd	nd	nd	nd
E0221 TPH in Water (μg/L)	•					
C10-C14 Fraction	20	nd	nd	nd	nd	50
C15-C28 Fraction	100	nd	nd	nd	nd	nd
C29-C36 Fraction	100	nd	nd	nd	nd	nd
E0010 BTEX (P&T) in Water (μg/L)						
Benzene	0.5	nd	nd	nd	nd	nd
Toluene	1	nd	nd	nd	nd	nd
Ethylbenzene	1	nd	nd	nd	nd	nd
Total Xylenes	3	nd	nd	nd	nd	nd
4-Bromofluorobenzene-SURROGATE	1	91%	92%	89%	92%	90%
			·			. ,
						· · · ·

PQL = Practical Quantitation Limit

Soils

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

Page 4 of 18 plus Cover Page

	-					
	Lab No	E91151	E91152	E91153	E91154	
	Sample Id	GW114	GW313	GW111	GW109	
Analyte	PQL					
E0230 TPH in Water by P&T/GC-MS	(µg/L)					
C6-C9 Fraction	20	nd	nd	nd	nd	
E0221 TPH in Water (µg/L)						
C10-C14 Fraction	20	nd	nd	nd	50	
C15-C28 Fraction	100	nd	nd	nd	nd	
C29-C36 Fraction	100	nd	nd	nd	nd	
E0010 BTEX (P&T) in Water (μg/L)						
Benzene	0.5	nd	nd	nd	nd	
Toluene	1	nd	nd	nd	nd	
Ethylbenzene	1	nd	nd	nd	nd	
Total Xylenes	3	nd	nd	nd	nd	
4-Bromofluorobenzene-SURROGATE	1	89%	89%	91%	89%	
						7,5
						•
				12.		
	· ·					

PQL = Practical Quantitation Limit

Soils

LNR = Samples Listed not Received

Waters

Leachates

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/L (ppm) in leachate unless otherwise specified in Method Header

: mg/L (ppm) unless otherwise specified in Method Header

: mg/kg (ppm) dry weight unless otherwise specified

Page 5 of 18 plus Cover Page

	1			F	T	
	Lab No	E91149	E91150	E91151	E91152	E91153
						-
	Sample Id	GW206	DUP2	GW114	GW313	GW111
Analyte	PQL					
E4870 Dissolved Metals in Waters						
Arsenic	0.001	nd	0.001	0.004	0.002	0.003
Beryllium	0.001	nd	nd	nd	nd	nd
Cadmium	0.0001	nd	nd	0.0007	nd	nd
Cobalt	0.001	0.005	nd	0.006	0.008	0.001
Copper	0.001	nd	nd	0.002	nd	0.002
Nickel	0.001	0.005	0.006	0.025	0.005	0.009
Lead	0.001	nd	nd	nd	nd	nd
Zinc	0.002	0.011	0.008	0.342	0.007	0.007
E4810 Dissolved Metals in Waters						
Iron	0.05	0.31	nd	8.60	nd	nd
Calcium	0.1	46	140	260	56	120
Potassium	0.1	3.4	16	50	11	6.2
Magnesium	0.1	29	54	66	28	52
Sodium	0.2	57	59	120	100	290
E48501 Dissolved Mercury in Waters						
Mercury	0.00005	nd	0.00006	nd	nd	0.00005
						······
	<u> </u>					

PQL = Practical Quantitation Limit

Soils

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

LNR = Samples Listed not Received

Waters

 $nd = \langle PQL \rangle$

-- = Not Applicable

Page 6 of 18 plus Cover Page

	1 1			1		1
	Lab No	E91154				
	Sample Id	GW109				
Analyte	PQL					
E4870 Dissolved Metals in Waters						
Arsenic	0.001	0.001				
Beryllium	. 0.001	nd				
Cadmium	0.0001	nd				
Cobalt	0.001	nd				
Copper	0.001	nd				
Nickel	0.001	0.006				
Lead	0.001	nd				
Zinc	0.002	0.007				
E4810 Dissolved Metals in Waters						
Iron	0.05	nd				
Calcium	0.1	140				
Potassium	0.1	16				
Magnesium	0.1	56				
Sodium	0.2	62				
E48501 Dissolved Mercury in Waters						(9)
Mercury	0.00005	0.00009				
					200	
			ć		13	
					-	
	I		•	l	<u> </u>	L

PQL = Practical Quantitation Limit

Soils Waters

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

Leachates

Page 7 of 18 plus Cover Page

	Lab No	E91149	E91150	E91151	E91152	E91153
	Sample Id	GW206	DUP2	GW114	GW313	GW111
Analyte	PQL					
E2450 Total Cyanide in Water						. , .s
Total Cyanide	0.005	nd				
E2600 pH in Water						
рН	0.1	6.9	6.7	6.8	7.0	7.1
E2430 Conductivity (µS/cm at 25.0 C)						
Electrical Conductivity	1	720	1500	2100	930	2000
E2690 Total Dissolved Solids in Water						
TDS (calc.)	1	460	960	1400	590	1300
E2310 Total Alkalinity in Water						
Bicarbonate as CaCO3	1	340	640	910	350	770
Carbonate as CaCO3	1	nd	nd	nd	nd	nd
Hydroxide as CaCO3	1	nd	nd	nd	nd	nd
Alkalinity as CaCO3	1	340	640	910	350	770
E2720 Sulphate in Water						
Sulphate	1	20	140	210	62	170
E2380 Chloride in Water						
Chloride	1	19	42	54	52	100
E2530 Total Hardness						
Total Hardness as CaCO3	0.5	230	560	330	260	520
E2630 Dissolved Phosphorus in Water						
Dissolved Phosphorus	0.01	nd	nd	nd	nd	nd
		•				

PQL = Practical Quantitation Limit

Soils

LNR = Samples Listed not Received

Waters

Leachates

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/L (ppm) unless otherwise specified in Method Header : mg/L (ppm) in leachate unless otherwise specified in

: mg/kg (ppm) dry weight unless otherwise specified

Method Header

Page 8 of 18 plus Cover Page

	Lab No	E91154			
		- CWHAO			
	Sample Id	GW109			
Analyte	PQL			 	
E2450 Total Cyanide in Water					
Total Cyanide	0.005				
E2600 pH in Water					
рН	0.1	7.0			
E2430 Conductivity (μS/cm at 25.0 C)					
Electrical Conductivity	1	1500			
E2690 Total Dissolved Solids in Water					
TDS (calc.)	1	970			
E2310 Total Alkalinity in Water					
Bicarbonate as CaCO3	1	620			
Carbonate as CaCO3	1	nd			
Hydroxide as CaCO3	1	nd			
Alkalinity as CaCO3	1	620			
E2720 Sulphate in Water					
Sulphate	1	140			
E2380 Chloride in Water					
Chloride	1	44			
E2530 Total Hardness					
Total Hardness as CaCO3	0.5	580			
E2630 Dissolved Phosphorus in Water		4			
Dissolved Phosphorus	0.01	nd			
·····			-		

PQL = Practical Quantitation Limit

Soils

: mg/kg (ppm) dry weight unless otherwise specified

LNR = Samples Listed not Received

Waters Leachates : mg/L (ppm) unless otherwise specified in Method Header

 $nd = \langle PQL \rangle$

-- = Not Applicable

Page 9 of 18 plus Cover Page

	Lab No	E91149	E91150	E91151	E91152	E91153
	Sample Id	GW206	DUP2	GW114	GW313	GW111
Analyte	PQL					
E2640 Total Phosphorus in Water						
Phosphorus	0.01	0.45	0.37	0.16	0.34	0.11
E2770 Kjeldahl Nitrogen in Water						
Kjeldahl Nitrogen	0.1	1.2	nd	32	2.8	0.8
E2550 Nitrate as N in Water						
Nitrate as N	0.01	0.13	8.58	0.05	0.94	0.12
E2560 Nitrite as N in Water						
Nitrite as N	0.01	0.15	0.01	0.12	0.56	0.05
E2330 Ammonia as N in Water						
Ammonia as N	0.01	0.43	nd	24.2	1.02	0.18
E2580 TOC in Water						
тос	1	11	19	12	7	9
E2350 BOD in Water (5-Day)						
BOD	5	nd	nd	11	nd	nd
E2420 Chemical Oxygen Demand						
COD	50	nd	nd	nd	nd	nd
			-			
						· · · · · · · · · · · · · · · · · · ·
······································						

PQL = Practical Quantitation Limit

Soils Waters

Leachates

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

Page 10 of 18 plus Cover Page

			1	1	
	Lab No	E91154			
	Sample Id	GW109			
Analyte	PQL				
E2640 Total Phosphorus in Water					
Phosphorus	0.01	0.31			
E2770 Kjeldahl Nitrogen in Water					
Kjeldahl Nitrogen	0.1	0.5			
E2550 Nitrate as N in Water		-			
Nitrate as N	0.01	9.01			
E2560 Nitrite as N in Water					
Nitrite as N	0.01	nd			
E2330 Ammonia as N in Water					
Ammonia as N	0.01	nd			
E2580 TOC in Water					
тос	1	12			
E2350 BOD in Water (5-Day)					
BOD	5	nd			
E2420 Chemical Oxygen Demand					
COD	50	nd			17.0
				e .	
					A :
	۰		 · · · · · · · · · · · · · · · · · · ·		

PQL = Practical Quantitation Limit

Soils Waters

Leachates

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

Page 11 of 18 plus Cover Page

		······			······	
	Lab No	E91149	E91150	E91151	E91152	E91153
	Sample Id	GW206	DUP2	GW114	GW313	GW111
Analyte	PQL					
E0120 PCB's in Water (µg/L)						
Aroclor 1016	10	nd	nd	nd	nd	nd
Aroclor 1221	10	nd	nd	nd	nd	nd
Aroclor 1232 and Aroclor 1242	10	nd	nd	nd	nd	nd
Aroclor 1248 and 1254 as total	10	nd	nd	nd	nd	nd
Aroclor 1260 and 1262 as total	10	nd	nd	nd	nd	nd
Total Polychlorinated biphenyl	10	nd	nd	nd	nd	nd
						·····

PQL = Practical Quantitation Limit

Soils

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

LNR = Samples Listed not Received

nd = < PQL

-- = Not Applicable

Page 12 of 18 plus Cover Page

			1	1	T	
	Lab No	E91154				
	Sample Id	GW109				
Analyte	PQL					
E0120 PCB's in Water (µg/L)						
Aroclor 1016	10	nd				
Aroclor 1221	10	nd				
Aroclor 1232 and Aroclor 1242	10	nd				
Aroclor 1248 and 1254 as total	10	nd				
Aroclor 1260 and 1262 as total	10	nd				
Total Polychlorinated biphenyl	10	nd				
					122	
					, ș. r	
					r'	
					54.5°	ά.
·						
					L	J

PQL = Practical Quantitation Limit

Soils

LNR = Samples Listed not Received

Waters

đ

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

 $nd = \langle PQL \rangle$

-- = Not Applicable

Page 13 of 18 plus Cover Page

	Lab No	E91149	E91150	E91151	E91152	E91153
	Sample Id	GW206	DUP2	GW114	GW313	GW111
Analyte	PQL					
E0140 Phenols By GC/MS In Water (μg/L)					
Phenol	5	nd	nd	nd	nd	nd
2-Chlorophenol	5	nd	nd	nd	nd	nd
2-Methylphenol	5	nd	nd	nd	nd	nd
3-Methylphenol & 4-Methylphenol	5	nd	nd	nd	nd	nd
2-Nitrophenol	5	nd	nd	nd	nd	nd
2.4-Dimethylphenol	5	nd	nd	nd	nd	nd
2.4-Dichlorophenol	5	nd	nd	nd	nd	nd
2.6-Dichlorophenol	5	nd	nd	nd	nd	nd
4-Chloro-3-methylphenol	5	nd	nd	nd	nd	nd
2.4.5-Trichlorophenol	5	nd	nd	nd	nd	nd
2.4.6-Trichlorophenol	5	nd	nd	nd	nd	nd
2.4-Dinitrophenol	20	nd	nd	nd	nd	nd
4-Nitrophenol	10	nd	nd	nd	nd	nd
2.3.4.6-Tetrachlorophenol	10	nd	nd	nd	nd	nd
4.6-Dinitro-2-methylphenol	20	nd	nd	nd	nd	nd
Pentachlorophenol	10	nd	nd	nd	nd	nd
4.6-Dinitro-2-sec-butylphenol	20	nd	nd	nd	nd	nd
2-Fluorophenol-SURROGATE	1	79%	81%	83%	72%	829
Phenol-D6-SURROGATE	1	69%	67%	67%	60%	689
2.4.6-Tribromophenol-SURROGATE	1	81%	86%	81%	87%	1089
			-			

PQL = Practical Quantitation Limit

Soils

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/L (ppm) in leachate unless otherwise specified in

Method Header

Page 14 of 18 plus Cover Page

	Lab No	E91154				
	Sample Id	GW109				
Analyte	PQL					
E0140 Phenols By GC/MS In Water (μ	g/L)					
Phenol	5	nd				
2-Chlorophenol	5	nd				
2-Methylphenol	. 5	nd				
3-Methylphenol & 4-Methylphenol	5	nd				
2-Nitrophenol	5	nd				
2.4-Dimethylphenol	5	nd				
2.4-Dichlorophenol	5	nd				
2.6-Dichlorophenol	5	nd				
4-Chloro-3-methylphenol	5	nd				
2.4.5-Trichlorophenol	5	nd				
2.4.6-Trichlorophenol	5	nd				
2.4-Dinitrophenol	20	nd				
4-Nitrophenol	10	nd				_
2.3.4.6-Tetrachlorophenol	10	nd				
4.6-Dinitro-2-methylphenol	20	nd				i¶r.d
Pentachlorophenol	10	nd			1	
4.6-Dinitro-2-sec-butylphenol	20	nd		-in		
2-Fluorophenol-SURROGATE	1	81%			1	
Phenol-D6-SURROGATE	1	69%	,			\$\$ P.
2.4.6-Tribromophenol-SURROGATE	1	106%				
· · · · · · · · · · · · · · · · · · ·						
	1			1	.1	

PQL = Practical Quantitation Limit

Soils Waters

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

Leachates

Page 15 of 18 plus Cover Page

	Lab No	E91149	E91150	E91151	E91152	E91153
	Sample Id	GW206	DUP2	GW114	GW313	GW111
Analyte	PQL					
E0080 OC Pesticides in Water (µg/L)						
НСВ	1	nd	nd	nd	nd	nd
a-BHC	1	nd	nd	nd	nd	nd
g-BHC	1	nd	nd	nd	nd	nd
Heptachlor	1	nd	nd	nd	nd	nd
Aldrin	1	nd	nd	nd	nd	nd
b-BHC	1	nd	nd	nd	nd	nd
d-BHC	1	nd	nd	nd	nd	nd
Oxychlordane	1	nd	nd	nd	nd	nd
Heptachlor epoxide	1	nd	nd	nd	nd	nd
Endosulfan 1	1	nd	nd	nd	nd	nd
Chlordane-Trans	1	nd	nd	nd	nd	nd
Chlordane-Cis	1	nd	nd	nd	nd	nd
trans-Nonachlor	1	nd	nd	nd	nd	nd
DDE	1	nd	nd	nd	nd	nd
Dieldrin	1	nd	nd	nd	nd	nd
Endrin	1	nd	nd	nd	nd	nd
DDD	1	nd	nd	nd	nd	nd
Endosulfan 2	1	nd	nd	nd	nd	nd
DDT	1	nd	nd	nd	nd	nd
Endosulfan sulfate	1	nd	nd	nd	nd	nd
Methoxychlor	1	nd	nd	nd	nd	nd
2.4.5.6-TCMX-SURROGATE	1	105%	121%	106%	101%	105%

PQL = Practical Quantitation Limit

Soils

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

Page 16 of 18 plus Cover Page

	-1		T		
	Lab No	E91154			
	Sample Id	GW109			
Analyte	PQL				
E0080 OC Pesticides in Water (µg/L)					
НСВ	1	nd			
a-BHC	1	nd			
g-BHC	1	nd			
Heptachlor	1	nd			
Aldrin	1	nd			
b-BHC	1	nd			
d-BHC	1	nd			
Oxychlordane	1	nd			
Heptachlor epoxide	1	nd			
Endosulfan 1	1	nd			
Chlordane-Trans	1	nd			
Chlordane-Cis	1	nd			
trans-Nonachlor	1	nd			
DDE	1	nd			
Dieldrin	1	nd			
Endrin	1	nd		,To	
DDD	1	nd		 	
Endosulfan 2	1	nd		- J	
DDT	1	nd		 a	.2
Endosulfan sulfate	1	nd			
Methoxychlor	. 1	nd			
2.4.5.6-TCMX-SURROGATE	1	. 94%			

PQL = Practical Quantitation Limit

Soils

LNR = Samples Listed not Received

Waters

Leachates

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

 $nd = \langle PQL \rangle$

-- = Not Applicable

Page 17 of 18 plus Cover Page

	Lab No	E91149	E91150	E91151	E91152	E91153
	Sample Id	GW206	DUP2	GW114	GW313	GW111
Analyte	PQL					,
E0110 USEPA Priority PAH's in Water	(μg/L)					
Naphthalene	1	nd	nd	nd	nd	nd
Acenaphthylene	1	nd	nd	nd	nd	nd
Acenaphthene	1	nd	nd	nd	nd	nd
Fluorene	1	nd	nd	nd	nd	nd
Phenanthrene	1	nd	nd	nd	nd	nd
Anthracene	1	nd	nd	nd	nd	nd
Fluoranthene	1	nd	nd	nd	nd	nd
Pyrene	1	nd	nd	nd	nd	nd
Benz(a)anthracene	1	nd	nd	nd	nd	nd
Chrysene	1	nd	nd	nd	nd	nd
Benzo(b) & (k)fluoranthene	2	nd	nd	nd	nd	nd
Benzo(a)pyrene	1	nd	nd	nd	nd	nd
Indeno(1.2.3-cd)pyrene	1	nd	nd	nd	nd	nd
Dibenz(a.h)anthracene	1	nd	nd	nd	nd	nd
Benzo(g.h.i)perylene	1	nd	nd	nd	nd	nd
Total USEPA Priority PAHs	1	nd	nd	nd	nd	nd
2-Fluorobiphenyl-SURROGATE	1	91%	99%	99%	104%	101%
Anthracene-D10-SURROGATE	1	97%	99%	106%	112%	93%
p-Terphenyl-D14-SURROGATE	1	117%	117%	125%	122%	118%
						[_]
	•• •• •• •• •• •• •• •• •• •• •• •• ••					

PQL = Practical Quantitation Limit

Soils

: mg/kg (ppm) dry weight unless otherwise specified

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

Waters

: mg/L (ppm) unless otherwise specified in Method Header

Leachates

-- = Not Applicable

Page 18 of 18 plus Cover Page

	T at M	E01154					٦
	Lab No	E91154					_
							_
	Sample Id	GW109					_
Analyte	PQL						
E0110 USEPA Priority PAH's in Water	(µg/L)						
Naphthalene	1	nd					
Acenaphthylene	1	nd					
Acenaphthene	1	nd					
Fluorene	1	nd					
Phenanthrene	1	nd					
Anthracene	1	nd	-				
Fluoranthene	1	nd					_
Pyrene	1	nd					_
Benz(a)anthracene	1	nd					
Chrysene	1	nd					
Benzo(b) & (k)fluoranthene	2	nd					_
Benzo(a)pyrene	1	nd					
Indeno(1.2.3-cd)pyrene	1	nd					
Dibenz(a.h)anthracene	1	nd					
Benzo(g.h.i)perylene	1	nd				*\U	
Total USEPA Priority PAHs	1	nd			•		
2-Fluorobiphenyl-SURROGATE	1	94%			-1 		
Anthracene-D10-SURROGATE	1	106%			S.		
p-Terphenyl-D14-SURROGATE	1	122%			b.		
· · · · · · · · · · · · · · · · · · ·							
							1
							1
	L			L		J	_

PQL = Practical Quantitation Limit

Soils Waters

Leachates

LNR = Samples Listed not Received

 $nd = \langle PQL \rangle$

-- = Not Applicable

: mg/kg (ppm) dry weight unless otherwise specified

: mg/L (ppm) unless otherwise specified in Method Header

AMDEL INTERNAL QUALITY ASSURANCE REVIEW.

Job NO. 0A01222

All testing in this report is covered by Amdel NATA accreditation number 1464, unless stated otherwise.

General

1. Laboratory QA/QC including Method Blanks, Duplicates, Matrix Spikes, Laboratory

Control Samples or CRM's are included in this QA/QC appendix. (Where applicable)

- 2. Inter-Laboratory proficiency trial results are available upon request.
- 3. PQL's are matrix dependent and are increased accordingly where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spike or surrogate recoveries.
- 5. Where 3 and 2 significant figures are reported for >10x PQL and <10x PQL respectively, the last figure is uncertain and is provided for statistical purposes only.

Holding Times

- 6. Samples duplicated or spiked are from this job and are identified in the following QA/QC report.
- 7. SVOC analyses on waters are performed on mixed, unfiltered samples(unless noted otherwise).

Maximum Holding Times for Soils, Sediments and Waters

Parameter

<u>Soils</u>

Volatile and Semi-Volatile Organic Analysis. Metals Inorganics* TCLPs*

Waters

Volatile Organic Analysis Semi-Volatile Organic Analysis Inorganics* Metals (dissolved metals should be supplied field filtered)

Extracted in 14 days, analysed within 40 days. Extracted and analysed within 28 days-6 months. Extracted and analysed within 7-28 days. Extracted and analysed within 14 days, (Zero Headspace-TCLP 7 days).

Extracted in 7 days, analysed within 40 days. Extracted in 7 days, analysed within 40 days. Analysed within 24 hrs-28 days. Prepared and analysed within 28 days.

* Please refer to 'Preservation Information Chart for Soils, Sediments & Waters' for further information. (ISFORM.098). Holding times may be extended with the use of preservation bottles and/or freezing samples. Reference: USEPA SW846 and AMDEL SPM-01 (incorporating NEPM Guidelines).

Chain of Custody and Sample Integrity

	<u>Yes</u>	<u>No</u>	<u>N/A</u>
Chain of Custody received with samples			
Custody seals were received intact, if used	•		
Samples were received chilled and in good condition			•
Samples received appropriately preserved for all tests	آ		
VOC/SVOC samples were received in teflon lined containers	آ		
Volatiles samples received with Zero Headspace			
Samples analysed within recommended holding times			
Chain of Custody completed by Amdel and attached			
Chromatography Calibration/Acceptence Criteria			
Retention time window meets acceptance criteria $(\pm 2\%)$			
Reference standard meets acceptance criteria $(\pm 10\%)$			
Recalibration standard meets acceptance criteria $(\pm 15\%)$	آ		
Internal standard recovery acceptable.			

AMDEL INTERNAL QUALITY ASSURANCE REVIEW Cont..

Amdel QA/QC Compliance Assess	sment	Yes	No	N/A
		100	110	
Surrogates performed on all appropacceptance limits (70% - 130% rec	-	\checkmark		
Matrix Spikes performed once per 1 in 20 samples (Results meet acce or 80% - 120% recovery* for inor	ptance limits - 70% - 130% recovery*	\checkmark		
Laboratory Control samples perfor and at least 1 in 20 samples (Resul - 70% - 130% recovery* in soil or		\checkmark		
Laboratory Duplicate samples perf and at least 1 in 10 samples (Resul <4 PQL - +/- 2 J 4-10 PQL - 0-25 or >10 PQL - 0-10 or	ts meet acceptance limits). PQL 50% RPD	\checkmark		
Method Blanks performed once pe 1 in 20 samples (Results not detect				
N/A=Not Applicable.	 * Phenols 50% - 130% recovery * SVOCs 60% - 130% recovery * Phenoxy Acid Herbicides 60% - 140% recovery 			
OA/OC Appendix				

QA/QC Appendix

Please refer to the following pages for the QA/QC data.

Comments specific to sample analyses from this job.

Schedule 2.2(a)(ii)

per D. SPRINGER B.App.Sc. Manager Environmental Sydne

QAQC : Matrix Spike(s)

	Spike	Level De	tected		Recovery	Details	
Analyte	Level	Spike 1	Spike 2	Rec 1 (%)	Rec 2 (%)	Average (%)	RPD (%)
E0221 TPH in Water (µg/L)							
C15-C28 Fraction	5500	5290		96%			
	· ·						

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

The number in brackets after the method header identifies the sample tested.

Page 1 of 22

Page 2 of 22

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	Recove	ry Details		
Analyte	Level (ppm)	Result1 (ppm)	Result2 (ppm)	Result3 (ppm)	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E0230 TPH in Water by P&T/GC-MS (μ	g/L)						
C6-C9 Fraction	200	180			94%		
E0221 TPH in Water (μg/L)							
C15-C28 Fraction	5500	4780			87%		
E0010 BTEX (P&T) in Water (µg/L)							
Benzene	10	10.0			99%		
Toluene	10	9			86%		
Ethylbenzene	10	9			94%		
Total Xylenes	30	26			85%		

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

Analyte

E0221 TPH in Water (μ g/L)

QAQC : Laboratory Duplicate(s)

Dupl A	Dupl B	Average	RPD (%)	Dupl A	Dupl B	Average	RPD (%)
ا ان من		1		1			

· · · · ·			1	1		
C10-C14 Fraction	nd	nd				
C15-C28 Fraction	nd	nd	-			
C29-C36 Fraction	nd	nd				
		-				
······································				 		
			 	 	-	
					-	
						haa

•

= Practical Quantitation Limit
= <PQL
= Not Applicable PQL nď

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/L (ppm) unless otherwise specified

The number in brackets after the method header identifies the sample tested.

Page 22 3 of

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E0230 TPH in Water by P&T/GC-MS (µ	ιg/L)					
C6-C9 Fraction	20	nd				
E0221 TPH in Water (μg/L)						
C10-C14 Fraction	20	nd				
C15-C28 Fraction	100	nd				
C29-C36 Fraction	100	nd				
E0010 BTEX (P&T) in Water (μg/L)						
Benzene	0.5	nd				
Toluene	1	nd				
Ethylbenzene	1	nd				
Total Xylenes	3	nd				
			-			

PQL = Practical Quantitation Limit nd = <PQL -- = Not Applicable

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

Page 22 5 of

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	d	Recovery Details			
Analyte	Level (ppm)	Result1 (ppm)	Result2 (ppm)	Result3 (ppm)	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)	
E4870 Dissolved Metals in Waters								
Arsenic	0.100	0.099			99%			
Beryllium	0.100	0.101			101%			
Cadmium	0.1000	0.097			97%			
Cobalt	0.100	0.092			92%			
Copper	0.100	0.094			94%			
Nickel	0.100	0.093			93%			
Lead	0.100	0.094			94%			
Zinc	0.100	0.097			97%			
E4810 Dissolved Metals in Waters								
Iron	1.0	1.00			100%			
Calcium	10.0	10			100%			
Potassium	10.0	10			105%			
Magnesium	10.0	9.8			99%			
Sodium	10.0	10			101%			
E48501 Dissolved Mercury in Waters								
Mercury	0.001	0.001			105%			

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

Page 6 of 22

QAQC : Laboratory Duplicate(s)

Analyte	Dupl A	Dupl B	Average	RPD (%)	Dupl A	Dupl B	Average	RPD (%)
E4870 Dissolved Metals in Waters								
Arsenic	nd	nd						
Beryllium	nd	nd						
Cadmium	nd	nd						
Cobalt	0.005	0.005	0.005	0%				
Copper	nd	nd						
Nickel	0.005	0.005	0.005	0%				
Lead	nd	nd						
Zinc	0.011	0.011	0.011	0%				
								2012 (MAR)
						÷		
	-					· · ·		
						1.4		
	_							

.

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable (S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/L (ppm) unless otherwise specified

The number in brackets after the method header identifies the sample tested.

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E4870 Dissolved Metals in Waters						
Arsenic	0.001	nd				
Beryllium	0.001	nd				
Cadmium	0.0001	nd				
Cobalt	0.001	nd				
Copper	0.001	nd				
Nickel	0.001	nd				
Lead	0.001	nd				
Zinc	0.002	nd				
E4810 Dissolved Metals in Waters						
Iron	0.05	nd				
Calcium	0.1	nd	1			
Potassium	0.1	nd				
Magnesium	0.1	nd				
Sodium	0.2	nd				
E48501 Dissolved Mercury in Waters						
Mercury	0.00005	nd				
			*			
			·····			

= Practical Quantitation Limit
= < PQL
= Not Applicable

PQL nd --

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

Page 8 of 22

QAQC : Laboratory Control Sample(s)

Analyte	Level (ppm)	Level Detected			Recovery Details		
		Result1 (ppm)	Result2 (ppm)	Result3 (ppm)	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E2450 Total Cyanide in Water							
Total Cyanide	0.460	0.500		-	109%		
E2600 pH in Water							
рН	7.4	7.4	7.4	100%	100%	100%	0%
E2430 Conductivity (µS/cm at 25.0 C)							
Electrical Conductivity	303	310			103%		
E2690 Total Dissolved Solids in Water							
TDS (calc.)	194	199			103%		
E2310 Total Alkalinity in Water							
Bicarbonate as CaCO3	59.5	58			98%		
Alkalinity as CaCO3	59.5	58			98%		
E2720 Sulphate in Water							
Sulphate	20	21	20	103 %	99%	101 %	3%
E2380 Chloride in Water							
Chloride	50	51			102%		
E2530 Total Hardness							
Total Hardness as CaCO3	66.2	66			99%		
E2630 Dissolved Phosphorus in Water							
Dissolved Phosphorus	1.0	1.03			103%		
						,	

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

QAQC : Laboratory Duplicate(s)

Analyte	Dupl A	Dupl B	Average	RPD (%)	Dupl A	Dupl B	Average	RPD (%)
E2720 Sulphate in Water								
Sulphate	20	20	20	0%				
E2380 Chloride in Water								
Chloride	18	19	19	5%				
						-		
						-		
							-	
						-		

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable (S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/L (ppm) unless otherwise specified

The number in brackets after the method header identifies the sample tested.

,

Page 9 of 22

ł

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E2450 Total Cyanide in Water		-				
Total Cyanide	0.005	nd				
E2600 pH in Water						•
рН .	0.1	5.5				
E2430 Conductivity (μS/cm at 25.0 C)						
Electrical Conductivity	1	nd				
E2310 Total Alkalinity in Water						
Bicarbonate as CaCO3	1	nd				
Alkalinity as CaCO3	1	nd				
E2720 Sulphate in Water						
Sulphate	1	nd				
E2380 Chloride in Water						
Chloride	1	nd				
E2530 Total Hardness						
Total Hardness as CaCO3	0.5	nd				
E2630 Dissolved Phosphorus in Water						
Dissolved Phosphorus	0.01	nd				-
					•	

Practical Quantitation Limit
< PQL
Not Applicable PQL nd

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	Recovery Details			
Analyte	Level (ppm)	Result1 (ppm)	Result2 (ppm)	Result3 (ppm)	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E2640 Total Phosphorus in Water							
Phosphorus	1.00	0.95			95%		
E2770 Kjeldahl Nitrogen in Water							
Kjeldahl Nitrogen	5.0	4.6			90%		
E2550 Nitrate as N in Water							
Nitrate as N	1.0	0.90			90%		
E2560 Nitrite as N in Water							
Nitrite as N	1.0	0.92			92%		
E2330 Ammonia as N in Water							
Ammonia as N	1.0	1.00			100%		
E2580 TOC in Water							
тос	100	98			98%		
E2350 BOD in Water (5-Day)							
BOD	200	200			100%		
E2420 Chemical Oxygen Demand							
COD	500	480			95%		
							а.

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

Page 11 of 22

1

1

ĥ

Page 12 of 22

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E2640 Total Phosphorus in Water						
Phosphorus	0.01	nd				
E2770 Kjeldahl Nitrogen in Water						
Kjeldahl Nitrogen	0.1	nd				
E2550 Nitrate as N in Water						
Nitrate as N	0.01	nd				
E2560 Nitrite as N in Water						
Nitrite as N	0.01	nd				
E2330 Ammonia as N in Water						
Ammonia as N	0.01	nd				
E2580 TOC in Water						
тос	1	nd				
E2350 BOD in Water (5-Day)						
BOD	5	nd				
E2420 Chemical Oxygen Demand						
COD	50	nd				
					•	
				'		
				1		
				-		
	-					
			-			

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

Page 13 of 22

l i

QAQC : Laboratory Control Sample(s)

	Leve	l Detecte	Recovery Details			
Level (ppm)	Result1 (ppm)	Result2 (ppm)	Result3 (ppm)	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
100	100			106%		
			· ·			
		Level Result1 (ppm) (ppm)	Level (ppm) Result1 Result2 (ppm) (ppm)	Level Result1 Result2 Result3 (ppm) (ppm) (ppm)	Level (ppm)Result1 (ppm)Result2 (ppm)Result3 (ppm)Rec 1 (%)	Level Result1 Result2 Result3 Rec 1 Rec 2 (%)

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

QAQC : Laboratory Duplicate(s)

Page 14 of 22

Analyte	Dupl A	Dupl B	Average	RPD (%)	Dupl A	Dupl B	Average	RPD (%)
E0120 PCB's in Water (µg/L)								
Aroclor 1016	nd	nd						
Aroclor 1221	nd	nd						
Aroclor 1232 and Aroclor 1242	nd	nd						
Aroclor 1248 and 1254 as tota	nd	nd						
Aroclor 1260 and 1262 as tota	nd	nd						
						-		
20-10-10-10-10-10-10-10-10-10-10-10-10-10								
						· · ·		<u>,</u>

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/L (ppm) unless otherwise specified

The number in brackets after the method header identifies the sample tested.

Page 15 of 22

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E0120 PCB's in Water (µg/L)						
Aroclor 1016	10	nd				
Aroclor 1221	10	nd				
Aroclor 1232 and Aroclor 1242	. 10	nd				
Aroclor 1248 and 1254 as total	10	nd				
Aroclor 1260 and 1262 as total	10	nd				
				-		
		1				

= Practical Quantitation Limit
= <PQL
= Not Applicable PQL nd

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

ł

p

Page 16 of 22

QAQC : Laboratory Control Sample(s)

		Leve	Detecte	ed	Recover	ry Details	
Analyte	Level (ppm)	Result1 (ppm)	Result2 (ppm)	Result3 (ppm)	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E0140 Phenois By GC/MS In Water (µg/L)							
Phenol	. 100	70			70%		
2-Chlorophenol	100	80			80%		
4-Chloro-3-methylphenol	100	110			110%		
4-Nitrophenol	100	100			104%		
Pentachlorophenol	100	80			81%		
•							
							-

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

Page 17 of 22

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E0140 Phenols By GC/MS In Water (µg/L)						
Phenol	5	nd				
2-Chlorophenol	5	nd				
2-Methylphenol	5	nd				
3-Methylphenol & 4-Methylpheno	5	nd				
2-Nitrophenol	5	nd				
2.4-Dimethylphenol	5	nd				
2.4-Dichlorophenol	5	nd				
2.6-Dichlorophenol	5	nd				
4-Chloro-3-methylphenol	5	nd				
2.4.5-Trichlorophenol	5	nd				
2.4.6-Trichlorophenol	5	nd				
2.4-Dinitrophenol	20	nd				
4-Nitrophenol	10	nd				
2.3.4.6-Tetrachlorophenol	10	nd				
4.6-Dinitro-2-methylphenol	20	nd				
Pentachlorophenol	10	nd				
4.6-Dinitro-2-sec-butylphenol	20	nd				
	•					

= Practical Quantitation Limit
= <PQL
= Not Applicable PQL nd --

QAQC : Laboratory Control Sample(s)

		Leve	l Detecte	ed	Recovery Details		
Analyte	Level (ppm)	Result1 (ppm)	Result2 (ppm)	Result3 (ppm)	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)
E0080 OC Pesticides in Water (µg/L)							
нсв	10	9			86%		
a-BHC	10	8			84%		
g-BHC	10	9			92%		
Heptachlor	10	9			93%		
Aldrin	10	9			89%	-	
b-BHC	10	10			99%		
d-BHC	10	10			99%		
Oxychlordane	10	10			101%		
Heptachlor epoxide	10	10			98%		
Endosulfan 1	10	10			101%		
Chlordane-Trans	10	10			100%		
Chlordane-Cis	10	11			105%		
trans-Nonachlor	10	10			104%		
DDE	20	20			102%		
Dieldrin	10	10			103%		
Endrin	10	10			104%		
DDD	20	21			104%		
Endosulfan 2	10	11			107%		
DDT	20	22			108%		
Endosulfan sulfate	10	11			109%		
Methoxychlor	10	11			109%		
			4				

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

22 Page 18 of

QAQC : Laboratory Duplicate(s)

Analyte	Dupl A	Dupl B	Average	RPD (%)	Dupl A	Dupl B	Average	RPD (%)
E0080 OC Pesticides in Water (μ g/L)								
нсв	nd	nd						
a-BHC	nd	nd						
g-BHC	nd	nd						
Heptachlor	nd	nd						
Aldrin	nd	nd						
b-BHC	nd	nd						
d-BHC	nd	nd						
Oxychlordane	nd	nd						
Heptachlor epoxide	nd	nd						
Endosulfan 1	nd	nd						
Chlordane-Trans	nd	nd						
Chlordane-Cis	nd	nd						
trans-Nonachlor	nd	nd						
DDE	nd	nd						
Dieldrin	nd	nd						
Endrin	nd	nd						~
DDD	nd	nd						
Endosulfan 2	nd	nd						
DDT	nd	nd						
Endosulfan sulfate	nd	nd						
Methoxychlor	nd	nd						

= Practical Quantitation Limit
= < PQL
= Not Applicable

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/L (ppm) unless otherwise specified

The number in brackets after the method header identifies the sample tested.

Page 19 of 22

Page 20 of 22

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank 1	Blank2	Blank3	Blank4	Blank5
	PQL					
E0080 OC Pesticides in Water (µg/L)						
нсв	1	nd				
a-BHC	1	nd				·
g-BHC	1	nd				
Heptachlor	1	nd				
Aldrin	1	nd				
b-BHC	1	nd				
d-BHC	1	nd				
Oxychlordane	1	nd				
Heptachlor epoxide	1	nd				
Endosulfan 1	1	nd				
Chlordane-Trans	1	nd				<u>.</u>
Chlordane-Cis	1	nd				
trans-Nonachlor	1	nd				
DDE	1	nd				
Dieldrin	1	nd				
Endrin	1	nđ				
DDD	1	nd				
Endosulfan 2	1	nd				
DDT	1	nd				
Endosulfan sulfate	1	nd				
Methoxychlor	1	nd				
	·					

= Practical Quantitation Limit
= < PQL
= Not Applicable PQL nd

QAQC : Laboratory Control Sample(s)

		Level	Detecte	ed 🛛	Recove	ry Details		
Analyte	Level (ppm)	Result1 (ppm)	Result2 (ppm)	Result3 (ppm)	Rec 1 (%)	Rec 2 (%)	Rec 3 (%)	
E0110 USEPA Priority PAH's in Water (μg/L)							
Naphthalene	10	9			90%			
Acenaphthylene	10	9			87%			
Acenaphthene	10	10			96%			
Fluorene	10	9			93%			
Phenanthrene	10	10			98%			
Anthracene	10	9			94%			
Fluoranthene	10	9			94%			
Pyrene	10	9			93%			
Benz(a)anthracene	10	8			80%			
Chrysene	10	10			103%			
Benzo(b) & (k)fluoranthene	20	15			75%			
Benzo(a)pyrene	10	7			72%			
Indeno(1.2.3-cd)pyrene	10	8			79%			
Dibenz(a.h)anthracene	10	7			73%			
Benzo(g.h.i)perylene	10	8			76%			

PQL = Practical Quantitation Limit -- = Not Applicable nd = < PQL

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

Page 21 of 22

İ

ł

I.

Page 22 of 22

QAQC : Method Blank(s)

ANALYTE	Sample ID	Blank1	Blank2	Blank3	Blank4	Blank5
	PQL					
E0110 USEPA Priority PAH's in Wat	ter (µg/L)					
Naphthalene	1	nd				
Acenaphthylene	1	nd				
Acenaphthene	1	nd				
Fluorene	1	nd				
Phenanthrene	1	nd				
Anthracene	1	nd				
Fluoranthene	1	nd				
Pyrene	1	nd				
Benz(a)anthracene	1	nd				
Chrysene	1	nd				
Benzo(b) & (k)fluoranthene	2	nd				
Benzo(a)pyrene	1	nd				
Indeno(1.2.3-cd)pyrene	1	nd				
Dibenz(a.h)anthracene	1	nd				
Benzo(g.h.i)perylene	1	nd				
						-
						-

PQL = Practical Quantitation Limit nd = < PQL -- = Not Applicable

(S) Soils : mg/kg (ppm) dry weight(W) Waters : mg/l (ppm) unless otherwise specified

٠

INDUSTRIAL AND ENVIRONMENTAL SERVICES DIVISION Trading as Australian Analytical Laboratories Pty Ltd ACN 001 491 667

Correspondence to: PO BOX 514 HORNSBY NSW 1630 5 Kelray Place ASQUITH NSW 2077 Telephone: (02) 9482 1922 Facsimile: (02) 9482 1734

Client: PPK Adelaide	Our Ref: 0A01222
Your Ref: 27K140D	Date: 23/01/01

SAMPLE DISPOSAL ADVICE

All samples remain the client's property after analysis. These will be either returned or disposed of (at the client's cost where applicable) following analysis.

Please indicate your requirements below.

1.	RETURN SAMPLES TO CLIENT	
2.	DISCARD AFTER * 6 Weeks - Soils * 4 Weeks - Waters	
3.	DISCARD IMMEDIATELY	

* Storage times commence from date of issue of the final report.

ADDITIONAL HOLDING REQUIREMENTS

4. HOLD SAMPLES UNTIL __/__ (DATE)

5. HOLD SAMPLES FOR EXTRA (WEEKS)

PLEASE NOTE: A charge of \$2.50 per sample per month or part thereof applies

RETURN TO FOLLOWING ADDRESS

TRANSPORT COMPANY

PLEASE NOTE: If this advice slip is not returned within 15 days, it will be assumed that the samples referenced above can be discarded after indicated storage times (*)

Authorised Signature

Please return to

Kattubava Sahul AMDEL Ltd P.O. Box 514 HORNSBY N.S.W. 2077 or fax to (02) 9482 1734

PD	K		aboratory Copy Project File Copy		Pied: seivi	se deliver the goo ices to the office i	ods a indica	nd/or ated:		348 Ed	ward Stre	et. Brisba	ine QLD 4000	Perti 97 Broadw	ay, Nedlands WA 6009	Chain of Custody
ACN 078 004 798			101 Pi	Adelaide 101 Pirie Street Adelaide SA 5000 Tel: (08) 8405 4300 Fax: (08) 8405 4301			Tel: (07) 3218 2222 Fax: (07) 3831 4223 Melbourne 163 Eastern Road, South Melbourne VIC 3205 Tel: (03) 9686 1166 Fax: (03) 9686 1110		Tel: (08) 9389 8668 Fax: (08) 9389 8447 Sydney 9 Blaxland Road, Rhodes NSW 2138 Tel: (02) 974 0333 Fax: (02) 9736 1568		Order No: 0771					
Job Title: Cumberra Kaul Vaud S				PPK Job Number:					Job Location:				Project Mana		eyndos/s.glen	
Laboratory Name:								•	Results Expe							
Address:	Name.	Andel			27K140D				>		Camperra			Fax Results t		A
		•							•					Fax Number:		
Fax Numbe	r:		· · · · · · · · · · · · · · · · · · ·		+		<u> </u>			+		<u> </u>		Phone Numb		
Phone Num	ber:				-	m					6			Format:	of Results Require	ed: Y / N
Contact Na	me:	·····				Type				s					ime Required:	5 days
Delivery Me	-				1.	ttive	8			GB	B	3				4/A
Quote Num	ber:			····	<u>E</u>	eva	ed (× 0	I A	OC/OP/P Metals** Curant			Comments:	1	
Date Sampled	Time	Sample I.D.	Container Size	Sample Location	Medium [*]	Preservative Type	Filtered	HdT	BTEX PAH's	OC/OP/PCB's	C	Ř		Initials		ents/Additional Information d/or Analysis Required
	E9/148	DUPI						x	x							······································
	ų	GW206						\$ #			××			· ·	Kand fill	analysis + cyanide
	56	DUP2							+	+	* =				Land fill	analysis
	51	9W114									X	≽			54	" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	52	9W 313									X	-			1/	" affeched
	53	96 111									X>	>			11	" 19 sheet
	54	GW 109									€ >	>			10	XINS CARGE
1999 5.4 Jay 46															/	RITEVED VA
															-	20 BEC 2000
			1999 - A.													JOA01222 M
																E A
Deline vieherd h	- AR ()	1.6	1												4	A STITUTE
Date & Time:	V: M. Rey	nolas	Relinquished b	y:					Relino							W = Water V = Vapour
	19-12 PPK	2000	Date & Time: Company:						Date): 				Legend**: (circle the	following to be tested)
	chedule 2	2.2(a)(ii)	Signature:						Comp	· · ·					Metals: Al (A) (E	
		Schacht	Received in Go & Condition by	od Order					Recei	vedin	Good	Order				Mn (1) (2) Se Sn V (27)
Date & Time:	20/12/01		Date & Time:	(110110).					& Cor		by (Na	ime):				
Company:	Andel		Company:						Comp					·····	Please fax bac	k a signed copy when
Signature:	Schedule 2	∠(a)(II)	Signature:						Signa	ignature:				A	samples are received at the laboratory	

ACN 078 004 798	Title: 04+17-100		Please deliver the goods and/o services to the office indicated: Adelaide 101 Pirie Street Adelaide SA 5000 Tel: (08) 8405 4300 Fax: (08) 8405 4301			:	34 Te	Brisbane 348 Edward Street, Brisbane QLD 4000 Tel: (07) 3218 2222 Fax: (07) 3831 4223 Melbourne 163 Eastern Road, South Melbourne VIC 3205 Tel: (03) 9686 1166 Fax: (03) 9686 1110			Tel: (08) C S) 5 9 Blaxia	dway, Nedlands WA 6009 9389 8668 Fax: (08) 9389 8447	Chain of Custody Order No: 0770				
Job Title:	CANBE	RRA RAIL	YARD	>5	PPK Job Numbe			ər:	Job L			ocation:	Project Ma		moldo S. Glenn		
Laboratory Name: A-MDEC				4	2714					0		•	and the second s	pected by/on:			
Address:	Name.	AMDEL		-	27K140D			>	Canberra			erra	Fax Results	Fax Results to: A / A			
													Fax Number:				
Fax Number:				+	<u> </u>				_				Phone Nun	01-2			
Phone Num					-										et of Results Required	d: Y / N	
Contact Na			· · · · · · · · · · · · · · · · · · ·		-	ype								Format:			
Delivery Me				·····	-	Ve T				ļ				a second s	Turnaround Time Required: 5 day		
Quote Num					Ξ	Preservative Type	8				%*				Invoice to: AIA		
Date			Container	Comple	Medium	ser	Filtered	т	X	PAH's OC/OP/PCB's	0C/0P/P Metals**			Comments			
Sampled	Time -	Sample I.D.	Size	Sample Location	ž	Pre	Ē			A C	S ₽			Initials		nts/Additional Information for Analysis Required	
18/12/00	£91136	90104	1 × 500 2 × 50					У	\times								
11	37	GW210	11					Х	X								
11	38	- Gw 310	ł,					x	X			•				191 170,	
ļI	39	GW 13	1 <i>i</i>					x	X								
H	40	GW 301	ų					x	x							RECEIVED ET	
ų	4	GW 307	u.					X	x						1 - 2	0 BEC 2000	
ų	42	4w305	11					X	x						101	A01222 -	
11	43	9W303	11					X	x						12		
!!	44	<u>9w204</u>	11					X	x						X X	2/12/	
<u>l</u> l	41	4W311	1,					X	x								
	46	GW 203	ч					x	x								
11	47	9W105	η			((N.	Y	$\boldsymbol{\lambda}$								
Relinquished by: M. Reynolos Relinquished by:							0		Relir	nquist	ned by:				Medium*: S = Soil, (V	V = Water, V = Vapour	
Date & Time: 19/12/2000 Date & Time:									Date	e & Tir	ne:				Legend**: (circle the fo		
Company: PPK Company:								Corr	npany	:					Cd Co Cr Cu Fe Hg		
Signature: Schedule 2.2(a)(ii) Signature:							Sign	Signature:					-	n Ni Pb Se Sn V Zn			
Received in Good Order & Condition by (Name):									Received in Good Order & Condition by (Name):				11 A 11 A		Tes No		
Date & Time: 20 12 00 Date & Time:							1	Date & Time:									
	Andel		Company:						Com	npany	:				1	a signed copy when	
Sistematore: Schedule 2.2(a)(ii)					AP1			- Sionariro							sam are	ved e la lory	

2/... 27K140D

- ▶ Selected metals (As, B¢ Cd, Co, Cu, Fe, Pb, Hg, Ni, Zn)
- ▹ PCB's
- ► CN (GW206 only)
- ► TPH

TEX

Parameters to be analysed will be:

- ▶ PH,EC, TDS by EC
- Cations Ca, Mg, Na, K
- Anions CO3, HCO3, SO4, OH, Cl
- Alkalinity (as CO3), hardness (carbonate, non carbonate, total)
- Nutrients phosphate, phosphorus, TKN, nitrate, nitrite, ammonia, ammonium

÷

- ▶ TOC, BOD, COD
- Phenols (speciated)
- Pesticides (OCP's)
- ▶ PAH's

P:\27_JOB5\27K_JOB5\27K140\27K140\URS LET MAJOR SITE REVIEW CANBERRA11.12.00,DOC

Appendix C

Photographs

Photo 1: No evidence of asbestos sheeting on surface soils or slabs.

Photo 2: Stormwater drain - no evidence of oil or oil staining.

Photo 3: Stormwater drain – no evidence of oil or oil staining.

Photo 4: Revegetated areas adjacent to fuel depot sidings. No visual evidence of staining.

Photo 5: Revegetated areas adjacent to fuel depot sidings. No visual evidence of staining.


Photo 6: Shell Depot - no evidence of staining.

Photo 7: Shell Depot - no evidence of staining.

Appendix D

Canberra Rail Station and Former Municipal Landfill Area, Groundwater Monitoring Well Locations

Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor

Indec Consulting

PPK House 101 Pirie Street Adelaide SA 5000 GPO Box 398 Adelaide SA 5001 Telephone +61 8 8405 4300 Facsimile +61 8 8405 4301 Email adelaide@ppk.com.au

ABN 84 797 323 433 NCSI Certified Quality System to ISO 9001

A Partnership between PPK E&I Pty Ltd and Parsons Brinckerhoff International (Australia) Pty Ltd Parsons Brinckerhoff Companies

16 August 2001 27K140D 01·0078·03.doc

©PPK Environment & Infrastructure [2001]

This document is the property of PPK Environment & Infrastructure ("PPK"). This document and the information contained in it are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PPK. PPK makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information contained in it.

Our Reference 27K140D/SCG/cc

16 August 2001

Mr Colin Denton Indec Consulting 300 Flinders Street ADELAIDE SA 5000

PPK House 101 Pirie Street Adelaide SA 5000 GPO Box 398 Adelaide SA 5001 Telephone +61 8 8405 4300 Facsimile +61 8 8405 4301 Email adelaide@ppk.com.au

ABN 84 797 323 433 NCSI Certified Quality System to ISO 9001

Dear Colin

Addendum Report: Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor

PPK is pleased to provide this draft addendum report to answer the queries raised by URS in their preliminary review of the reports associated with the investigation and remediation works at the Canberra railway station yards and rail corridor.

If you have any queries please do not hesitate to call me on the above number.

Yours sincerely

Schedule 2.2(a)(ii)

Dr Peter Woods Principal Hydrogeologist PPK E&I Pty Limited

for

Stuart Glenn Principal, Environmental Division PPK E&I Pty Limited

A partnership between PPK E&I Pty Ltd ABN 80 078 004 798 and Parsons Brinckerhoff International (Australia) Pty Ltd ABN 36 006 475 056

Contents

Page Number

1.	Intr	oduction	1
2.	Sum	nmary of Issues Raised	2
	2.1	Groundwater Monitoring to Confirm Fate Modelling	2
		2.1.1 Old Refuelling Depot2.1.2 Vacant Landfill Site	2 3
	2.2	Former Railway Turntable	3
	2.3	Abattoir USTs	4
	2.4	Landfill Area (East of Jerrabomberra Creek)	4
	2.5	Asbestos	4
	2.6	Oily Water Drains	4 -
	2.7	Oil Staining on Soils	4
	2.8	Petroleum Hydrocarbon Vapours	4

Appendices

Appendix A	URS	Summary	Review
/ ippondix / i	010	ourninay	11011011

Appendix B Analytical Results

Appendix C Photographs

Appendix D Canberra Rail Station and Former Municipal Landfill Area, Groundwater Monitoring Well Locations

1. Introduction

PPK Environment & Infrastructure (PPK) was commissioned by Indec Consulting (Indec), on behalf of Australian National under Contract 1013, to undertake a series of environmental investigations and remedial works at the Canberra railway station yards and rail corridor as part of the Commonwealth's environmental remediation program. These investigations and remedial works were comprehensively reported in December 2000 in the document titled "Report on Further Environmental Site Investigations and Site Remedial Works Canberra Railway Station Yards and Rail Corridor" (PPK Ref 27K140D Document No. 99-0885-00).

Following a review of this report by URS a number of issues and clarifications were requested. These were detailed in a report dated 15 December 2000 and titled "Major Site Environmental Audit – Canberra" (see Appendix A).

Following this review, PPK undertook a series of further investigations, inclusive of confirmatory groundwater monitoring, increased analyte testing and site inspections. This work was completed on 22 December 2000.

This report relates to these latest investigations undertaken throughout December 2000.

2. Summary of Issues Raised

PPK

2.1 Groundwater Monitoring to Confirm Fate Modelling

Solute transport modelling was undertaken and reported in the original PPK report to determine the likely migration of identified dissolved–phase groundwater contamination. In general, PPK determined that dissolved components migrated hydraulically down-gradient in the local groundwater toward Jerrabomberra Creek. It was nominated that dispersive effects during transport potentially would result in a dilution of contaminant concentrations. And that transport of any contaminant plume would also be retarded by the effects of sorption to organic matter and other aquifer material.

To forecast actual impacts, PPK undertook one dimensional (1-D) solute transport modelling as presented by van Genuchten and Alves ('Analytical Solutions of the One-dimensional Convective-Dispersive Solute Transport Equation', 1982, US Department of Agriculture technical Bulletin No.1661). Results of the modelling were clearly defined in Section 9.3 of the abovementioned PPK report. The conclusion drawn from this modelling suggested that any identified groundwater contamination would rapidly dilute, migrate very slowly and not pose any risk to Jerrabomberra Creek.

A review of PPK's findings undertaken by URS noted that additional objective data, in the form of groundwater monitoring results, would be of benefit to confirm the model predictions. This was specifically in relation to two potential areas, namely the former refuelling depot and vacant dump site.

2.1.1 Old Refuelling Depot

Modelling of the identified PSH groundwater contamination plume indicated no risk of impacts to Jerrabomberra Creek in excess of the established assessment criteria for the protection of fresh water ecosystems. This was confirmed at the time of modelling by groundwater monitoring between the source and Jerrabomberra Creek.

To further confirm the model predictions, another monitoring round of wells around the identified source, inclusive of GW104, GW210, GW310, GW13, GW301, GW307, GW305, GW303, GW204, GW311, GW203 and GW105 was undertaken. All results recorded were below laboratory detection limits (see laboratory analyses Appendix B).

This monitoring round objectively reconfirms the model predictions of minimal movement of the identified plume and the absence of risk to Jerrabomberra Creek, sited some 800 m from the source.

2.1.2 Vacant Landfill Site

The previous PPK report identified one localised source of TPH at the northern end of the former waste disposal site. Fate and transport modelling indicated that the identified concentration was not likely to impact on the adjacent Jerrabomberra Creek.

The URS review nominated two areas of clarification, in respect of the vacant landfill site, namely the need for further confirmatory analyses associated with an identified TPH plume and the need for typical leachate analyses within the groundwater.

A further round of groundwater sampling and analysis was undertaken to address these review points.

TPH:

Previous testing had revealed a single sample recovered from the north western portion of the site with concentrations of dissolved-phase TPH. Subsequent testing has confirmed the presence of this contamination, however it is apparently contained, with no adjacent or downgradient wells recording any indications of TPH. The latest results validate the model prediction that "TPH would not exceed 0.43 μ g/L (below the laboratory method limit of reporting) at a distance of 50 m from the source."

Leachate:

In addition to TPH, the latest round of analyses included a series of standard leachate parameters to confirm any impact resulting from any landfill materials. Wells sampled included GW109, GW206, GW114, GW313, and GW111 (see laboratory results Appendix C). Results show evidence of minor impact of the local groundwater with typical leachate parameters inclusive of elevated TDS, hardness, nitrate and ammonia. Heavy metal results were all at low concentrations or below detection limits.

Other than evidence of elevated ammonia sulphate levels in some wells no contaminants (major ions, metals, pesticides or hydrocarbons) at levels of concern for this area were identified.

In addition, the modelling of groundwater behaviour corroborates that no impacts, in excess of the assessment criteria for the protection of freshwater ecosystems, would be detected at Jerrabomberra Creek.

On this basis, no further action is required.

2.2 Former Railway Turntable

Reviewing of old ariel photographs revealed that the former rail turntable is located partially under Robbo's Pet Barn and the adjacent bituminised car parking area, this area is surrounded by groundwater wells both up and down gradient. Subsequent testing has confirmed no downgradient wells recording any indications of petroleum hydrocarbon contamination. On this basis, no further action is required.

2.3 Abattoir USTs

The former abattoir site was not part of this site assessment.

2.4 Landfill Area (East of Jerrabomberra Creek)

The former landfill area east of Jerrabomberra Creek, north and adjacent to the railway alignment, was considered to be outside of the scope of this report. This land was not considered to be AN land and was not part of this site assessment.

2.5 Asbestos

Site inspection of the potential asbestos contaminated area on 20 December 2000 revealed no evidence of residual asbestos sheeting (see Photographs Appendix C).

Based on this finding, no further action is required.

2.6 Oily Water Drains

Site inspection on 20 December 2000 confirmed the areas previously identified as potential disposal drains for oily water showed no visual evidence of oil stain or residue (see Photographs Appendix C).

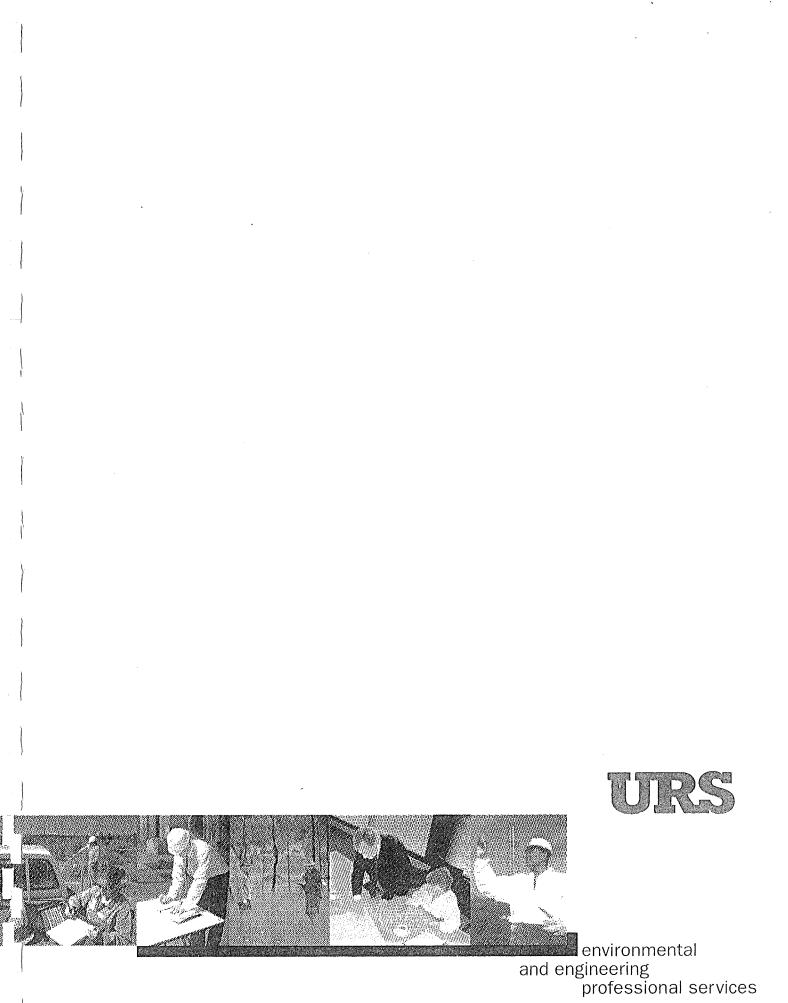
Based on this latest finding, no further action is required.

2.7 Oil Staining on Soils

Previously reported oil staining, both along the fuel depot sidings and adjacent to the Shell depot, was reinspected as part of an overall site review in December 2000.

Staining was no longer in evidence along the fuel depot sidings (see Photographs in Appendix C) and significant growth of grass and other vegetation is now in evidence.

Based on this latest finding, no further action is required.


Staining associated with the Shell depot is considered a matter for Shell and outside the scope of this report.

2.8 Petroleum Hydrocarbon Vapours

PPK is drafting an environmental status report on the Canberra site, highlighting all identified areas of risk inclusive of areas with potential hydrocarbon vapours. This separate report will enable current and future users of the site to develop their own specific Safe Systems of Work.

Appendix A

URS Summary Review

Report

Major Site Environment Audit – Canberra

Prepared for Indec Consulting

15 December 2000

URS Australia Pty Ltd ACN 000-691-690 URS House, 658 Church Street Richmond, Victoria 3121 Australia PO Box 285, Richmond Victoria 3121 Tel: 61 3 9279 2888 • Fax: 61 3 9279 2850

Contents

1	Bac	Background and Objectives		
2	Sur	nmary of Work Conducted and Reviewed	2-1	
3	Rev	3-1		
	3.1	Fuel Depots Adjacent to the Eastern Rail corridor	3-1	
	3.2	Former Cement Works Adjacent to the Eastern Rail corridor	3-1	
	3.3	Old Refueling Depot	3-1	
	3.4	Former Goods Shed	3-2	
	3.5	Main Canberra Station Area	3-2	
	3.6	Leased Areas (William Edmunds Plumbers and ARHS)	3-2	
	3.7	Vacant Dump Site	3-3	
	3.8	Corridor between Jerrabomberra Creek and Ipswich Street	3-3	
4	Stat	Statement of Review4-1		
5	Lim	itations to Review	5-1	

List of Appendices

Appendices

Appendix A	References
Appendix A	Kerences

- Appendix B Major Site Review Checklist and Conformance Report
- Appendix C Memoranda and Proposed Report Format

Background and Objectives

In consultation with the ACT Government Indec Consulting (Indec) acting for the Commonwealth Department of Transport and Regional Services have engaged URS Australia Pty Ltd (URS) formerly AGC Woodward-Clyde Pty Ltd to conduct an independent audit review of the former Australian National (AN) land in Canberra. The review has been carried out by Mr. Warren Pump, a Victorian EPA Accredited Contaminated Land Auditor. The land was Commonwealth property which passed from the Commonwealth Railways to AN when the latter was formed. Since the sale of AN in November 1997 a site assessment and remediation program instigated by AN and now managed by Indec and funded through the Commonwealth Government has been carried out at the Canberra Site by PPK Environment and Infrastructure (PPK). This audit has been prepared for Indec Consulting and the Commonwealth Government to provide the ACT Government confidence that the necessary investigation and remedial action required for the continued use of the site for which it was last used prior to the sale date of AN has occurred.

At the time of the sale of AN the Commonwealth Government committed funding to remediate former rail sites and property to a standard suitable for the continuing use for which the property was last used prior to the sale date. The Commonwealth Government undertook this action regardless of whether AN or previous land owners or users caused the environmental contamination.

Indee has been appointed by the Commonwealth to manage all aspects of the remediation program. The remediation process is and has been based on a risk management basis which takes account of the commitment of the Commonwealth to remediate sites to allow land-use consistent with ongoing use for which it was last used.

This independent audit has been carried out, which is equivalent to a an environmental audit carried out for contaminated land in accordance with the requirements of the Environment Protection Authority of Victoria. However, this audit is not a statutory audit.

In conducting the audit, the Auditor has consider the suitability of the land, based on its environmental condition, for the following range of land uses:

- Light and heavy industrial, especially industrial processes traditionally associated with urban railways and railyards;
- Commercial activities; and
- Solid waste disposal and soil filling.

In addressing such land uses, the Auditor has formed an opinion of the existence, nature and extent of any actual material environmental harm, or threatened material environmental harm, regarding the site. The term "material environmental harm" has the same meaning as that in the ACT *Environment Protection Act 1997*.

This review is only concerned with impacts to soil and groundwater which may offer a risk to the environment or human health. The review is not concerned with operational issues at the sites, nor is it

Background and Objectives

concerned with the protection of natural flora or fauna (other than those that typically exist in a highly modified form in urban railyards); soil aesthetics; dust; noise; vibration; or ground corrosivity.

S:\PROJECTS\13017 AUST NATIONAL\011\R029-A.DOC\6-AUG-01

Summary of Work Conducted and Reviewed

The discussion below provides a brief summary of the reports prepared by PPK and the description of the works performed.

"Environmental Audit of the Australian National Facilities, Canberra Railway Station Yards and Rail Corridor", 16 March 1998 Document No. 27K009A 98-182.DOC.

This report presents the past and current activities at the site which have the potential to cause impact to the identified environmental receptors.

"Phase II Environmental Site Assessment, Canberra Railway Station and Rail Corridor", 12 November 1998, Document No. 27K140A 98-845.DOC.

This report presents the results of the first round of soil and groundwater investigations at the various areas identified during the environmental audit above. It specifically assessed the following areas:

- The fuel depots and former cement works and their impact to the railway corridor;
- The former goods shed (now Robbo's Pet Barn) and surrounding area;
- The old refueling depot;
- The main Canberra station area and surrounds;
- Leased area occupied by William Edmunds Plumbers and the Australian Railway Historical Society (ARHS);
- Vacant dump site (which is understood to have been used for uncontrolled disposal of municipal wastes); and
- Corridor between Jerrabomberra Creek and Ipswich Street.

"Report on Further Soil and Groundwater Investigations, Canberra Railway Station and Rail Corridor", 14 January 1999, Document No. 7K140B 99-014.DOC

This report presents the results of the second (Phase IIB) round of soil and groundwater investigations at various areas identified upon completion of the initial Phase II investigations. It specifically assessed the following areas:

- Contaminated soil issues associated with the former cement works;
- Re-sampling of groundwater from monitoring wells in the railway corridor adjacent to the fuel depots;
- Installation of additional groundwater monitoring bores in the vicinity of former refueling area to delineate the extent of groundwater contamination; and

Summary of Work Conducted and Reviewed

• Installation of additional groundwater monitoring bores at the vacant dump site to assess potential impacts to the Jerrabomberra Creek.

"Report on Further Environmental Site Investigation and Site remedial Works, Canberra Railway Station Yards and Corridor", 17 December 1999, Document No. 27K140C 99-0885-00.DOC.

This report presents the results of further site assessment works (soil and groundwater) and remediation (groundwater) undertaken as a result of the findings in the Phase IIB assessment. It specifically assessed the following areas:

- Human health risk assessment of soil contamination (metals) adjacent to the former cement works along the rail corridor;
- Further groundwater monitoring adjacent to the fuel depots along the eastern rail corridor;
- Installation of additional groundwater monitoring bores and groundwater remediation at the former refueling area. The assessment also included fate and transport modelling of residual groundwater contamination;
- Further test pitting, installation of additional groundwater monitoring bores and groundwater sampling at the vacant dump site. The assessment also included fate and transport modelling of residual groundwater contamination at the north-western end of the dump site;
- Investigation of underground storage tanks (USTs) at the area leased by William Edmunds Plumbers. The investigation included sampling of soils from test pits and sampling a nearby groundwater monitoring bore in a down-gradient location; and
- Investigation of fouled railway ballast removed from the vicinity of the main Canberra railway station and placed south-east of the station and south Robbo's Pet Barn. The investigation included sampling of the fouled ballast and surrounding soils and collection of groundwater samples from nearby bores in a down-gradient location.

This review is a summary of the main issues identified in the various investigations carried out across the Canberra Rail Facility. Minor non-conformances or areas where there are minor identified risks which do not impact continued railway use of the site have been included in the detailed checklist presented in Appendix B.

A number of minor non conformances have been identified during this review, which are presented in this report, and it is understood that PPK is currently addressing these issues.

3.1 Fuel Depots Adjacent to the Eastern Rail corridor

Levels of petroleum hydrocarbon (TPHs) above the adopted criteria for continued railway use were identified adjacent to the Shell and Mobil fuel depots. These levels were at concentrations which represented petroleum hydrocarbons floating on the groundwater table (phase separated hydrocarbons – PSH). It is understood that Indec have communicated these issues to the fuel companies for further consideration.

In most cases the identified TPHs are not likely to impact upon the continued use of this facility for railway purposes. However, a combination of significant concentration of light fraction TPH compounds (C6-C9 at 46,600 ug/L) and the shallow depth to ground water (approximately 2 metres) may expose workers in the areas to potential soil vapours. An assessment of this issue is required to assess that identified receptors are not exposed to any potential risks associated with the soil vapours.

3.2 Former Cement Works Adjacent to the Eastern Rail corridor

Concentrations of metals (lead and zinc) were identified at levels exceeding the adopted criteria for continued railway use. The area was limited in vertical and lateral extent (less than 10 square metres in area and within a depth of 1 metre). The concentrations of zinc were subsequently identified to be within the NEHF, 1998 assessment criteria for 'hot-spots'. The concentration of lead was compared to the health risk assessment (for lead contamination in soils) performed for the Port Pirie Rail Yards. The parameters (exposure pathways, applicable exposure factors and toxicological factors) of the risk assessment for the Port Pirie site were reviewed. The identified parameters are considered to represent a conservative scenario in terms of the Canberra site. Therefore the identified concentration of lead in soils is likely to be acceptable for continued railway use.

3.3 Old Refueling Depot

Levels of TPHs were identified in the vicinity of the former refueling area above the adopted assessment guidelines. Phase separated hydrocarbons were also noted in three of the groundwater monitoring bores. It was estimated that approximately 50 litres of PSH was floating on the groundwater table. Remediation of the PSH was undertaken using a 'pig sock' lowered into the impacted groundwater bores. The pig sock removed PSH by absorption. The last report prepared for the site documented that approximately 5 litres of PSH had been removed.

The significance of the remaining contaminated groundwater was undertaken using fate and transport groundwater modelling techniques. The modelling indicated that there is likely to be minimal risks to the Jerrabomberra Creek. Future monitoring of this area would be required to confirm the predictions of the modelling.

During assessment of this area groundwater monitoring bore GW304 reported a concentration of TPH C6-C9 at 63,000 ug/L. Assessment of the chromatogram indicated that this petroleum hydrocarbon was not derived from the same source as the former refueling area (which was predominantly used for storage and dispensing diesel). The significance of this contamination was also assessed using the fate and transport model, which indicated that there is likely to be no future risks associated with this contamination. However, there has been no further explanation of the presence of this contamination. It is recommended that the results be reviewed to address this anomaly.

3.4 Former Goods Shed

There were no significant issues associated with the operations of the goods shed which had the potential to impact the site. However, the facility was established over filled ground. The filled ground included solid and inert wastes.

3.5 Main Canberra Station Area

There are no current activities associated with the Canberra station which have the potential to impact continued railway use of the site. In the past ballast contaminated with TPHs was removed and geofabric liner placed to prevent future TPH leakage from the locomotives. There was no documentation provided up to the time of this review which indicated validation of the excavation was performed. However, groundwater was sampled from monitoring bores down-gradient from the area and there were no impacts identified in the groundwater.

Fouled ballast was deposited in various locations south-east of the station area. It is assumed this material was sourced during the removal of the ballast from the main Canberra station area. Assessment of the ballast material, adjacent soils and groundwater down-gradient from the area indicated that there are no significant issues which would limit continued railway use of the site.

3.6 Leased Areas (William Edmunds Plumbers and ARHS)

Site facilities are located over filled areas and are assumed to be an extension of the vacant dump area. One significant issue was identified in the area occupied within the William Edmunds site. The review identified, three underground storage tanks located north and adjacent to the main building. Assessment of the soils adjacent to the USTs and groundwater down-hydraulic gradient indicated no adverse impacts.

3.7 Vacant Dump Site

The results of the investigation of this area indicated the filled area varied from approximately 2m to 6m and contained predominantly domestic (solid / inert wastes) and in the later years of operation, restricted filling to building rubble (soil fill, concrete, bricks, etc.). Levels of TPHs were identified in the northern end of the dump and appeared to be localised in area. Fate and transport modelling indicated that the identified concentration is not likely to impact on the adjacent Jerrabomberra Creek. However, further monitoring of the groundwater should be undertaken to confirm the modelling outcomes.

Although no significant putrescible domestic fill was encountered during the test pitting exercise, there are indications that the groundwater quality has been impacted by leachate generated by the decomposition of putrescible wastes. Traces of cyanide were also detected in GW206 above the guidelines for protection of fresh water ecosystems. It is recommended that groundwater quality be monitored for typical landfill leachate parameters, as well as other parameters identified in previous monitoring.

3.8 Corridor between Jerrabomberra Creek and Ipswich Street

No significant issues were identified in this area which would impact upon continued railway use of the area.

Review of the assessment reports has highlighted that other areas have been identified which have the potential, to impact identified receptors at the site. These areas only have the potential to be an issue if significant contamination is present. These include:

- The filling of the former railway turntable. This issue was highlighted in the environmental audit report;
- USTs (now removed) were located in the former abattoir site, immediately east of Newcastle Street. It is presumed that the abattoir site in not part of the site;
- Potential for fragments of asbestos sheeting to exist in the surface soils was highlighted in the environmental audit and no assessment was performed;
- Oily wastes being disposed into the stormwater drain at the ARHS site. This issue was raised in the environmental audit report and no further assessment has been performed;
- The environmental audit report identified filling east of the Jerrabomberra Creek north and adjacent to the railway alignment. The filling, as illustrated in the aerial photo was similar to the vacant dump site area;
- Significant staining of the soils by petroleum hydrocarbons was noted along-side the fuel depot sidings during the environmental audit of the site. No further assessment of these soils was undertaken. It is assumed that the sidings are located on railway land; and

- Black oily waste was observed during the environmental audit in a drainage alignment adjacent to the Shell depot. There was no further assessment of these areas noted in the later environmental site assessment reports.
- The assessments prepared by PPK have been performed in accordance with the methods and guidelines usually employed for the assessment of potentially contaminated sites, however, there has been no comparison of the local requirements of Environment ACT and supporting legislation for the protection of the environment. The detailed audit report will reference the Environment ACT legislation and any relevant guidelines.
- In this review, the Auditor has formed an opinion of the existence, nature and extent of any actual material environmental harm, or threatened material environmental harm, regarding the site. On the basis of the information provided and reviewed, there is no evidence to suggest that the issues assessed present actual material environmental harm to exist. However, until further information can be provided, threatened environmental harm exists for the following issues:
- The potential for landfill leachate from the vacant dump site to be impacting the underlying groundwater and therefore the Jerrabomberra Creek;
- The potential for landfill leachate to be generating from the filled area east of the Jerrabomberra Creek (north and adjacent to the railway alignment) to be impacting the underlying groundwater and therefore the Jerrabomberra Creek; and
- The potential for petroleum hydrocarbon soil vapours adjacent to the Shell bulk terminal to impact upon the identified receptors.

Statement of Review

The review has indicated that there have been no issues which are likely to impact the identified continued uses of the site. However, as identified in this review, there are number of issues which require further assessment, documentation or monitoring. This is required to ensure receptors identified at the site (workers or the neighboring environment) are not exposed to adverse risks and to confirm that the outstanding issues identified herein are addressed and pose no impact to continued use of the site for the identified uses.

As indicated in the beginning of Section 3 above, PPK is currently in the process of addressing the issues raised in this review.

Limitations to Review

This review has not sought to investigate the total extent of potential land contamination at the site reviewed, rather it has checked that the works undertaken and the results achieved were appropriately carried out within the constraints of the total number of sites to be managed.

Reliance on Data

This review has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, URS has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. URS will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to URS.

Environmental Conclusions

In accordance with the scope of services, URS has relied upon the data and has not conducted any environmental field monitoring or testing in the preparation of the report. The conclusions are based upon the data and visual observations and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Within the limitations imposed by the scope of services, the assessment of the site and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

Report for Benefit of Client

The report has been prepared for the benefit of the Client and no other party. URS assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of URS or for any loss or damage suffered by any other party in relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

Appendix A References