

2. Development Constraints

2.1 **Easements**

2.1.1 Sewer & Electrical

An existing shared service easement of varying width between 2.5m and 4m is aligned adjacent to the northern boundary and contains an underground electricity and sewer service. The existing sewer and electrical easement may be a constraint to the development of the block.

2.1.2 Gas

The gas main is currently identified on ACTMAPi to be located within an existing easement with an approximate width of 3.7m. The existing gas easement may be a constraint to the development of the block.

2.2 **Overland Flow**

There appears to be an existing minor overland flow path through the Site that could convey flow from a low point in the carpark towards the oval to the east. The indicative alignment of this overland flow path is shown on the Existing Services Plan, drawing number MMD-311006-C-DR-CC05-SP-0001 in Appendix A.

This overland flow path has a potential catchment area of approximately 12 Ha. The overland flow path has been identified on the basis of a visual assessment on site and contour information of the surrounding area shown on ACTMAPi.

To comply with the Design Standards for Urban Infrastructure the overland flow paths should not cross block leases. The overland flow path may be a development constraint to the Site. A site survey is required to be undertaken to confirm the overland flow path alignment.

2.3 Existing Path

There is an existing concrete footpath that passes through the southern part of the Site that currently provides access from Rivett shops to the path network within the open space system as well as nearby playground facilities. Refer Figure 2.1 below.

It is proposed that the existing footpath through the Site be removed and offsite pedestrian facilities be upgraded by providing footpath continuity to the existing carpark servicing the oval. It is anticipated that the existing footpath south of the development Site should be sufficient for the pedestrians accessing the path network and the playground from the Rivett shops.

Preliminary discussions with TAMS have indicated that further investigation beyond the scope of this report, including observations of pedestrian movements and volumes is required to be carried out to identify the impact of removing the pedestrian footpath. – Refer correspondence in Appendix C.

Tree Assessment

A Tree Assessment dated 17/06/2013 undertaken by Envirolinks Design (reference number 1317), refer to Appendix D, indicates the following:

■ There are approximately 35 trees located within the Site – Refer figures 2.2 and 2.3 showing existing trees;

Figure 2.2: Existing Site Trees

- 1 high value protected tree is located within the adjacent verge of Rivett Place towards the south west corner of the block;
- Generally the majority of trees within the block are of low value, with the exception of 2 medium value trees; and
- Two trees within the Site towards the south east corner are considered to be Protected Trees under the Tree Protection Act

Trees identified as protected may be a constraint to the development of the block.

Cost Estimate

The cost estimate to provide site servicing to the Site is as follows:

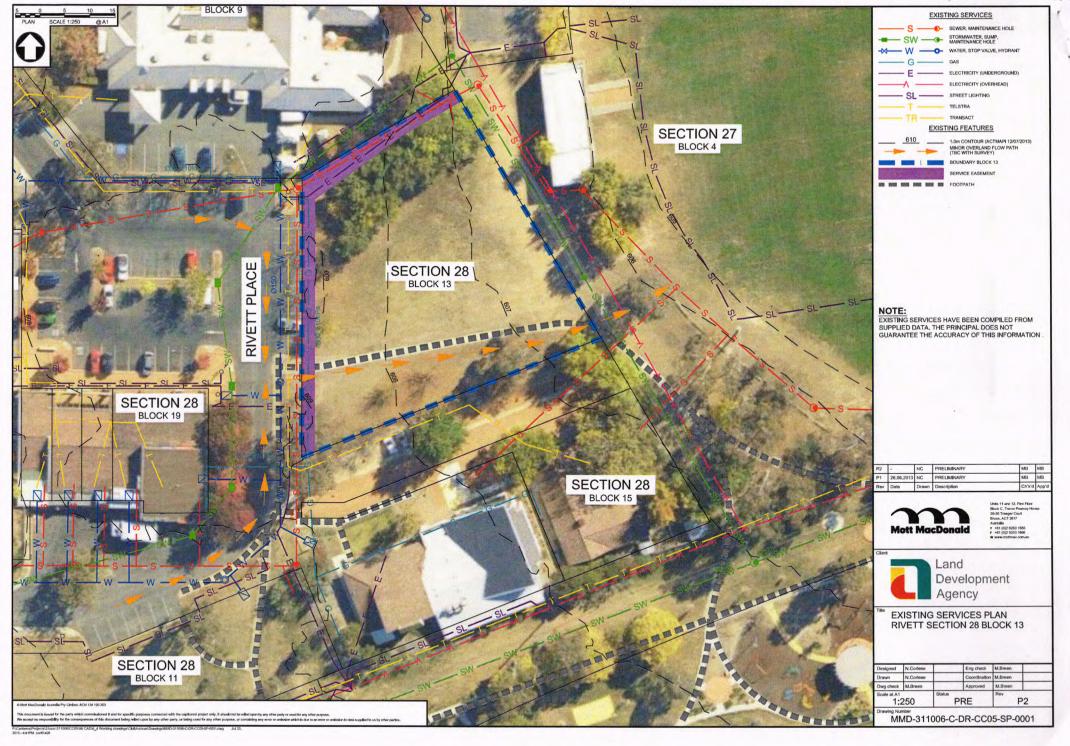
ITEM	DETAILS	COST
Stormwater	Stormwater tie to new maintenance hole adjacent to western boundary of the Site	
Sewer	Utilise existing tie subject to a capacity and condition check.	
Water Supply	Water supply tie to existing main on eastern boundary of the Site	
Telecommunication, Gas and Electricity	Ultimate connection by leaseholder (potential relocation of telecommunication pit and gas connection not included)	
Vergeworks	Demolition of existing footpath through Site	
	Extension of existing footpath along the western boundary of the Site	
	Restoration grassing in vicinity of path	
	Hard paving	
Access	Provision for vehicular access	
TOTAL		

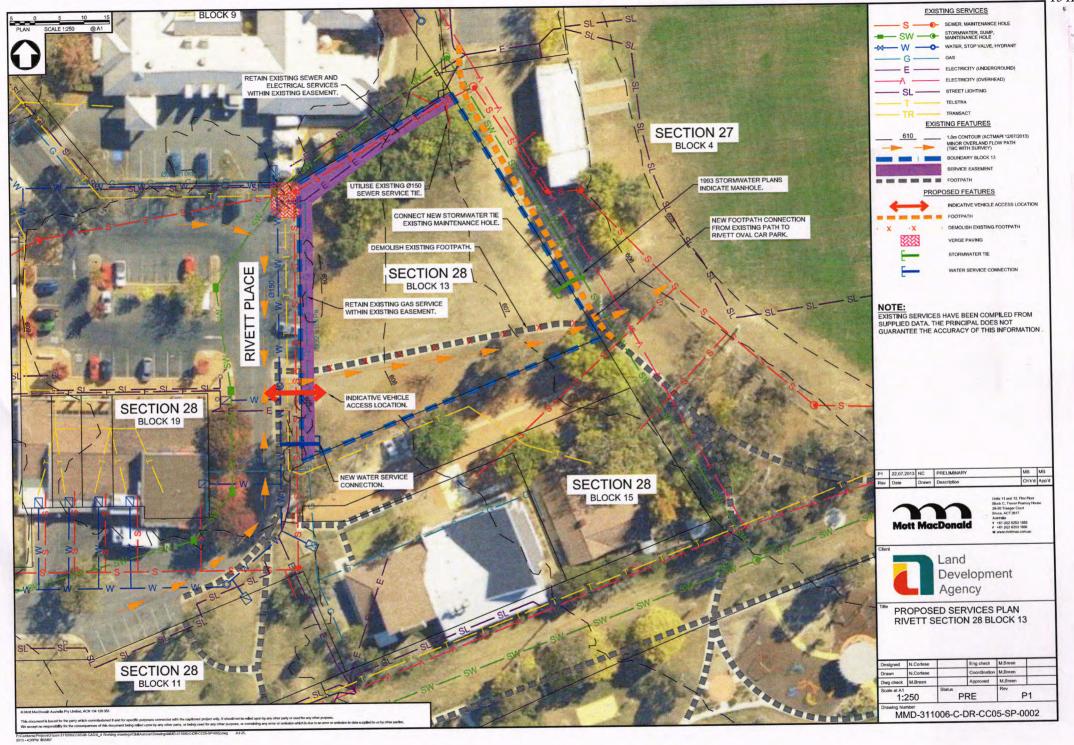
The above indicative cost estimates are allowances only. Further design development may amend the design and associated cost estimates. This indicative cost estimate is qualified on that basis. The above costs include

- 10% GST:
- 10% to account for preliminaries;
- 20% allowance for construction contingencies; and
- 20% allowance has been included in the estimates to account for design and supervision.

It is understood to be service authority policy that gas, electricity and communications will be supplied to the block boundary at the authorities' expense subject to the commercial viability of the ultimate demand. However, it is possible that these network connections may incur some cost to the leaseholder. These potential costs do not form part of the above indicative estimate.

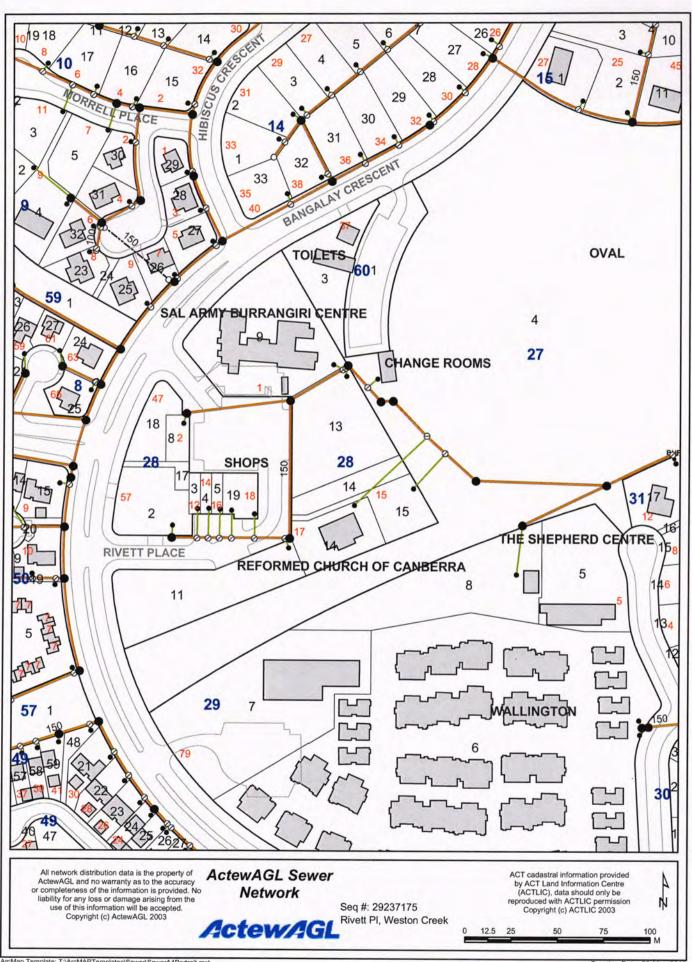
Rivett Section 28 Block 13

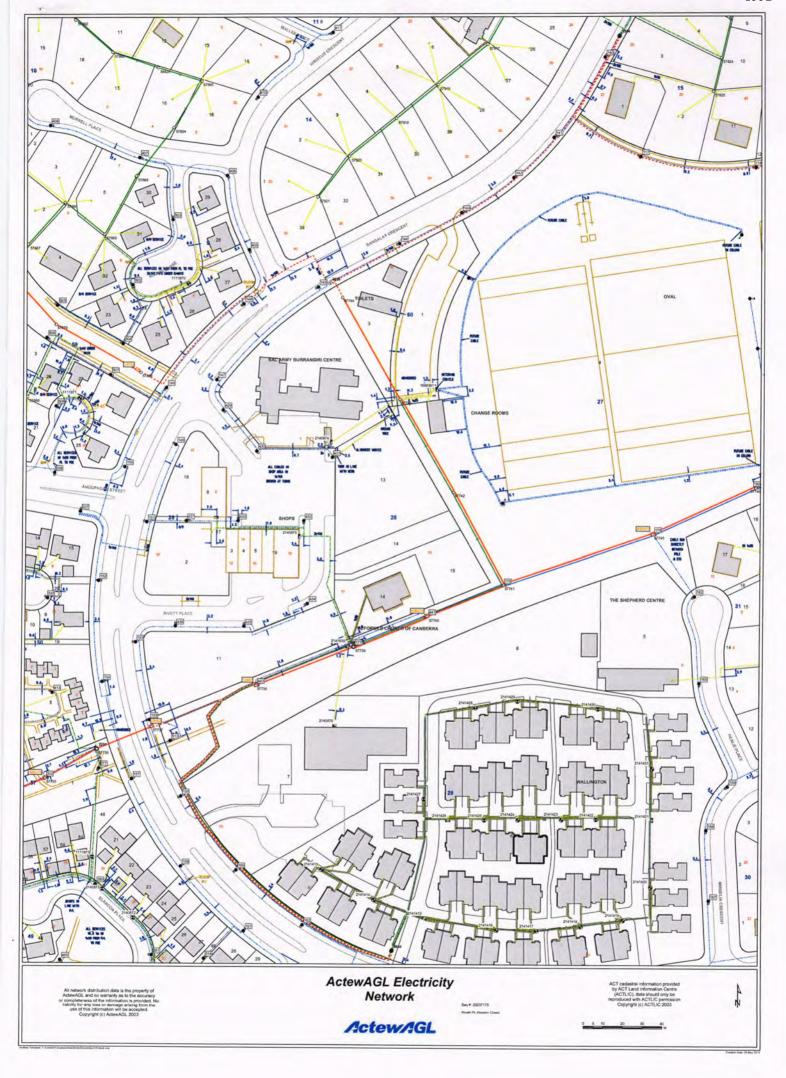

Appendices

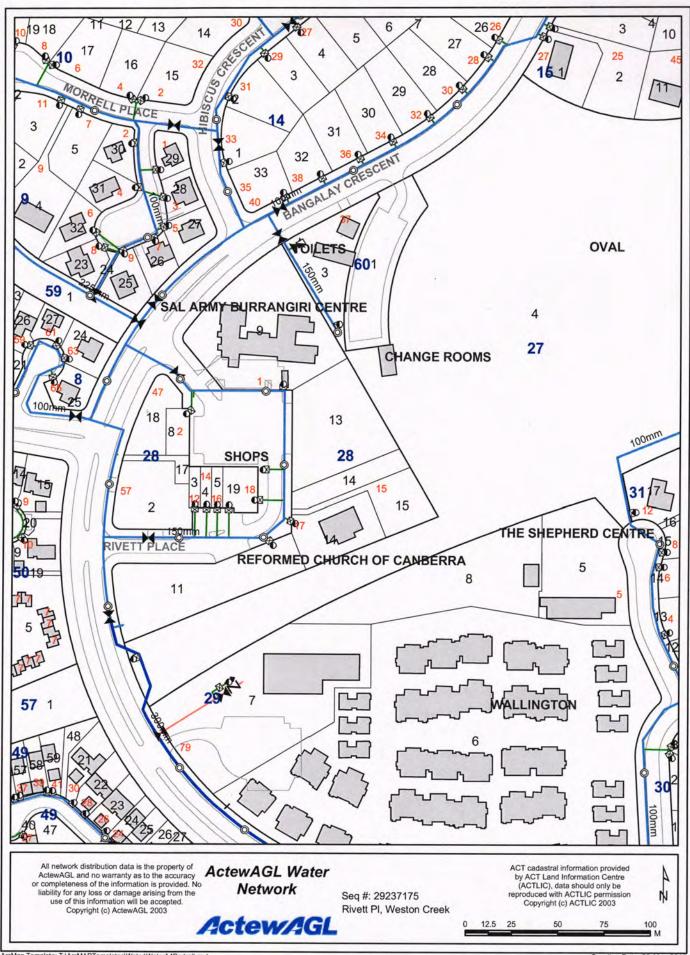

Appendix A.	Site Plans		17
Appendix B.	Dial Before You Dig Plans		18
Appendix C.	Authority Correspondence		19
Appendix D.	Tree Assessment		20
Appendix E.	Contamination/Geotechnical Reports		21

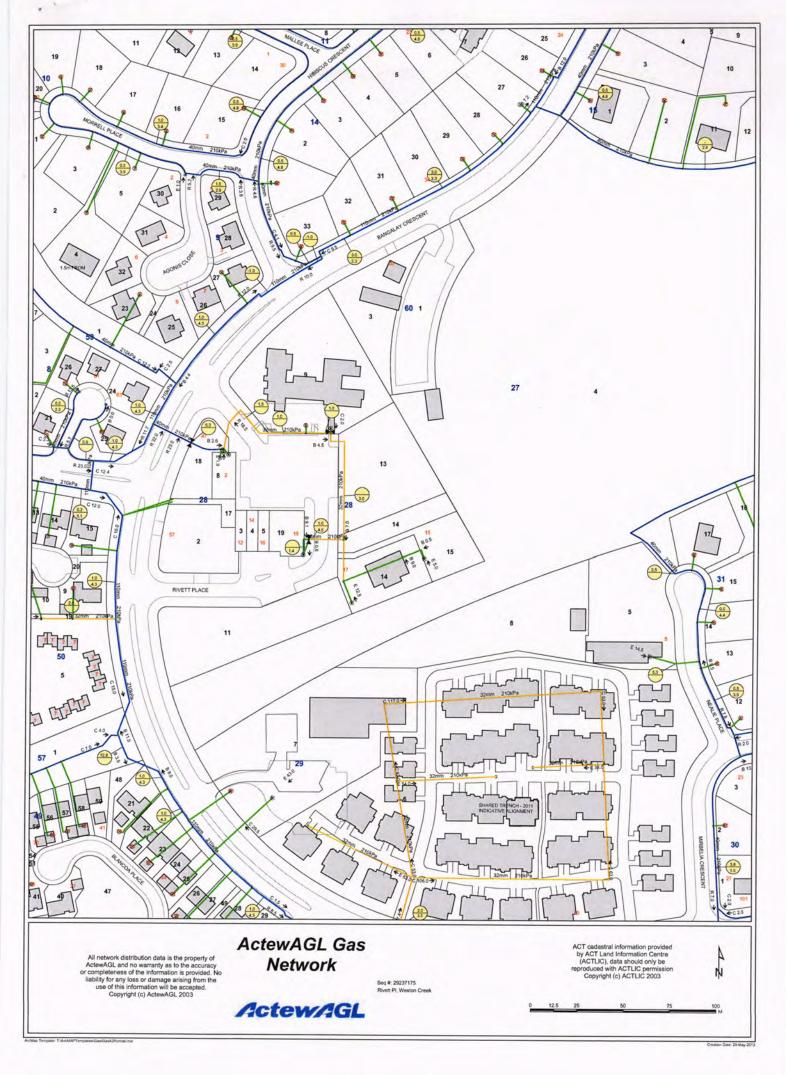
Appendix A. Site Plans

- **Existing Services Plan**
- A.2. **Proposed Services Plan**





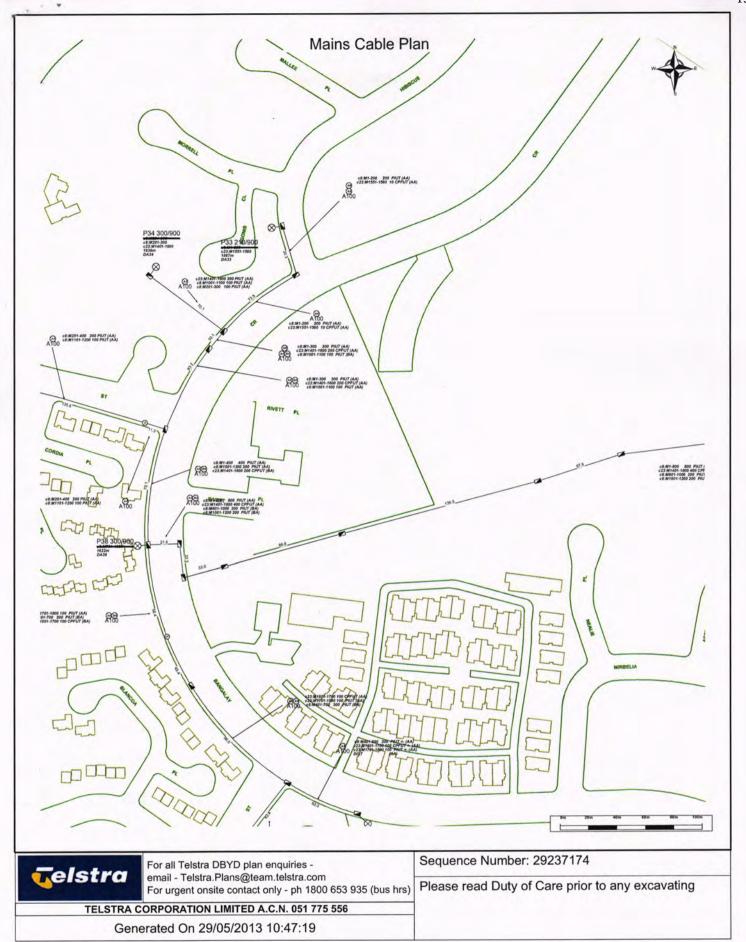



Appendix B. Dial Before You Dig Plans

- **ActewAGL Sewer Plan**
- B.2. **ActewAGL Electricity Plan**
- B.3. **ActewAGL Water Supply Plan**
- **ActewAGL Gas Plan**
- **Telstra Telecommunication Plan** B.5.

TELSTRA CORPORATION LIMITED A.C.N. 051 775 556

Generated On 29/05/2013 10:47:15


The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

Appendix C. Authority Correspondence

- **ACTER Water Sewer & Water Tie Connections**
- **ActewAGL** network enquiry
- C.3. **ZNX** gas service connection
- C.4. **Telsta communications connection**
- C.5. **TAMS Access, footpath and Stormwater Connections**

Filardo, Michael D

From:

Reid, Bruce

Sent:

05 July 2013 15:44

To:

Subject:

RE: Water Network Query - Rivett Section 28 Block 13

/ Michael

Rivett Section 28 Block 13

The location of the new water supply connection and existing sewer tie appear to be in acceptable locations. Water service location and size maybe adjusted to suit the proposed development, otherwise a nominal diameter service be supplied.

Regards

Bruce Reid Senior Technical Officer **ACTEW Water**

12 Hoskins St Mitchell, ACT 2911

Ph; 2 Email;

From:

Sent: Tuesday, 25 June 2013 16:02

To: Reid, Bruce Cc: Breen, Mike J

Subject: RE: Water Network Query - Rivett Section 28 Block 13

Hi Bruce.

Further to my email below, please refer to the attached sketch showing the:

- proposed location for a new water service tie to the west boundary of Block 13, connecting to an existing water main on Rivett Place; and
- location of an existing 150mm dia sewer tie at the north corner of Block 13, to be utilised.

Could you please review the sketch and provide in-principle approval for these service ties?

Kind Regards,

- Civil Design Drafter

Mott MacDonald T: +61(0)2 6253 1555 F: +61(0) 6253 1666 Email: nic.cortese@mottmac.com.au First Floor, block C, Trevor Pearcy House, 28-30 Traeger Court, Bruce ACT 2617

From:

Sent: 24 June 2013 3:43 PM

To: Bruce Reid Cc: Breen, Mike J

Subject: Water Network Query - Rivett Section 28 Block 13

Hi Bruce,

Mott MacDonald is undertaking a Site Investigation Report on behalf of the LDA for the aforementioned block. As part of this investigation we are required to identify ActewWater networks that can provide a water connection for a future development. According to the plans provided via Dial Before You Dig there are ActewWater water main parallel to the western of Block 13 within the road reserve of Rivett Place (please see attached).

Could you please advise of a suitable location to provide a service connection to the site?

Please do not hesitate to contact me should you require anything further.

Kind Regards,

Civil Design Drafter

Mott MacDonald

Units 11 & 12, First Floor, Block C, Trevor Pearcey House, 28-30 Traeger Court, Bruce ACT 2617 Australia www.mottmac.com

T +61 (0)2 6253 1555 | F +61 (0)2 6253 1666 E

Mott MacDonald - Confidential Communication. This e-mail is confidential. If you are not the intended recipient, or you have received this e-mail in error, any use, dissemination, or copying is prohibited. Please destroy this transmission (including any attachments), and notify the sender by reply e-mail. Mott MacDonald takes care to ensure that data transmitted is appropriate and that the content is free from viruses or defects. However, we do not warrant that this communication is free from any viruses or defects. We deny any liability for loss or damage caused as a result of the receipt or use of this communication.

PLEASE NOTE This email and any attachments may be confidential. If received in error, please delete all copies and advise the sender. The reproduction or dissemination of this email or its attachments is prohibited without the consent of the sender.

WARNING RE VIRUSES: Our computer systems sweep outgoing email to guard against viruses, but no warranty is given that this email or its attachments are virus free. Before opening or using attachments, please check for viruses. Our liability is limited to the re-supply of any affected attachments.

Any views expressed in this message are those of the individual sender, except where the sender expressly, and with authority, states them to be the views of the organisation.

Filardo, Michael D

From:

enworks <enworks@actewagl.com.au>

Sent:

28 June 2013 14:35

To:

enworks Breen, Mike J

Cc: Subject:

RE: Electricty Network Query - Rivett Section 28 Block 13

Hi

The service that exist within the easement of the block 13 is to be retained and if developer requires to relocate this service then they need to provide us the route. There is another enquiry going on for the relocation of this service, you need to contact me so that I can discuss further as what is required and how this can be done.

Moreover in regards to the current capacity of the network, we need to know type and size of the development for block 13 before we can tell you how this will be service. It would be better if you submit the PNA request in future when you have further details available for the development.

Please feel free to contact me for further clarification.

Thank you.

Kind Regards Nadeem Azizi

Senior Network Connections Engineer ActewAGL

T: 02 6293 5714 | F: 02 6293 5851 | M:

www.actewagl.com.au

Please consider our environment before printing this email.

Sent: Friday, 28 June 2013 10:29 AM

To: enworks Cc: Breen, Mike J

Subject: Electricty Network Query - Rivett Section 28 Block 13

Hi,

Mott MacDonald are currently undertaking a Site Investigation Report on behalf of the LDA for the aforementioned block. As part of this investigation we are required to identify electrical services that may limit development of the site and also those that can provide a potential connection for a future development. ActewAGL Dial Before You Dig plans indicate that there is an electrical service line located within the north boundary of Block 13 (please refer attached). It is understood that this main is located within an established easement as indicated on ACTMAPi.

Could ActewAGL please advise if:

- it is preferred that the service that exists with the easement of Block 13 be retained and not relocated; and
- there is capacity within the current network to provide electrical services to a development on Block 13?

Please do not hesitate to contact me should you require anything further.

Kind Regards,

Civil Design Drafter

Mott MacDonald

Units 11 & 12, First Floor, Block C, Trevor Pearcey House, 28-30 Traeger Court, Bruce ACT 2617 Australia www.mottmac.com

T +61 (0)2 6253 1555 | F +61 (0)2 6253 1666 E

Mott MacDonald - Confidential Communication. This e-mail is confidential. If you are not the intended recipient, or you have received this e-mail in error, any use, dissemination, or copying is prohibited. Please destroy this transmission (including any attachments), and notify the sender by reply e-mail. Mott MacDonald takes care to ensure that data transmitted is appropriate and that the content is free from viruses or defects. However, we do not warrant that this communication is free from any viruses or defects. We deny any liability for loss or damage caused as a result of the receipt or use of this communication.

PLEASE NOTE This email and any attachments may be confidential. If received in error, please delete all copies and advise the sender. The reproduction or dissemination of this email or its attachments is prohibited without the consent of the sender.

WARNING RE VIRUSES: Our computer systems sweep outgoing email to guard against viruses, but no warranty is given that this email or its attachments are virus free. Before opening or using attachments, please check for viruses. Our liability is limited to the re-supply of any affected attachments.

Any views expressed in this message are those of the individual sender, except where the sender expressly, and with authority, states them to be the views of the organisation.

From:

Sent:

25 June 2013 09:11

To:

Breen, Mike J

Cc: Subject:

RE: Gas Network Query - Rivett Section 28 Block 13

G'day Nik,

In response to your queries:

- If you leave the gas main in its current location, then the block usage is limited.
 We might need to bore under the car park to move the main outside the property.
- No issues with servicing from anywhere along the main.

I had a look at Catnap, and can see the frontage nominated (coloured) as a 'gas easement'. Is it tho? I can't remember asking for one? What does the Deposited Plan (amended?) show? If this is a *registered* easement, then I recommend leaving the main 'as is' and advise the developer that he is restricted in building right to the boundary line. If there is not a registered easement on this block, then ZNX will relocate the main from the property at the developer's cost.

Regards

Construction Project Planner

Ph E:

5-7 Johns Place HUME ACT 2620

ZNX is part of the Zinfra Group, previously known as Jemena Infrastructure Services, and was launched as a specialist infrastructure service provider on 1st April 2012.

From:

Sent: Monday, 24 June 2013 12:18 PM

To:

Cc: Breen, Mike J

Subject: Gas Network Query - Rivett Section 28 Block 13

Hi

Mott MacDonald are currently undertaking a Site Investigation Report on behalf of the LDA for the aforementioned block. As part of this investigation we are required to identify gas mains that may limit development of the site and can provide a potential connection for a future development. ActewAGL Dial Before You Dig plans indicate that there is a 210 kPa main 32mm in diameter is located parallel to the western boundary of Block 13 (please refer attached). It is understood that this main is located within an established easement as indicated on ACTMAPi.

Could ZNX please provide the following preliminary advice:

- any limitations on and future development of Block 13 by retaining the gas main in the current easement;
- a suitable route to relocate the gas main outside of the block if this is seen as a viable option;
- whether a connection would be allowed off this line (or any relocation), if required?

Please do not hesitate to contact me should you require anything further.

Kind Regards,

Civil Design Drafter

Mott MacDonald

Units 11 & 12, First Floor, Block C, Trevor Pearcey House, 28-30 Traeger Court, Bruce ACT 2617 Australia www.mottmac.com

T +61 (0)2 6253 1555 | F +61 (0)2 6253 1666 E

Mott MacDonald - Confidential Communication. This e-mail is confidential. If you are not the intended recipient, or you have received this e-mail in error, any use, dissemination, or copying is prohibited. Please destroy this transmission (including any attachments), and notify the sender by reply e-mail. Mott MacDonald takes care to ensure that data transmitted is appropriate and that the content is free from viruses or defects. However, we do not warrant that this communication is free from any viruses or defects. We deny any liability for loss or damage caused as a result of the receipt or use of this communication.

This is a confidential message intended for the named recipient(s) only. The contents herein are privileged to the sender and the use thereof is restricted to the intended purpose. If you have received this e-mail in error, please do not use, disclose, distribute, copy, print or relay on this email. If receipt is in error, please advise the sender by reply email. Thank you.

Filardo, Michael D

From:

Sent:

25 June 2013 17:35

To:

Cc:

Breen, Mike J

RE: Telstra Network Query - Rivett Section 28 Block 13 Subject:

Developer will need to bring the leadin conduits(s) to the property boundary close to the existing pit. Authorise Telstra personnel will connect developer provided conduit to the Telstra network.

Regards,

Principal Planner - NSW Country South & ACT

Forecasting & Area Planning NSW and Wideband | Networks & Access Technologies | Telstra Operations | E Jacob.y.lai@team.telstra.com| W http://www.in.telstra.com.au/ism/nswareaplanning/

This communication may contain confidential or copyright information of Telstra Corporation Limited (ABN 33 051 775 556). If you are not an intended recipient, you must not keep, forward, copy, use, save or rely on this communication, and any such action is unauthorised and prohibited. If you have received this communication in error, please reply to this email to notify the sender of its incorrect delivery, and then delete both it and your reply.

From:

Sent: Monday, 24 June 2013 12:54 PM

To:

Cc: Breen, Mike J

Subject: Telstra Network Query - Rivett Section 28 Block 13

Hi

Mott MacDonald are undertaking a Site Investigation Report on behalf of the LDA for the aforementioned block. As part of this investigation we are required to identify Telstra Networks that can provide a connection for a future development. Telstra Dial Before You Dig plans indicate there is an existing a Telstra cables parallel to the western and southern boundaries of Block 13 (please refer attached).

Could Telstra please advise if it will be acceptable in principle, to provide a connection from (one of) the existing C type Telstra Pits to the proposed development Site? If this is not acceptable could Telstra please advise of a suitable location to connect a service connection to the site?

Please do not hesitate to contact me should you require anything further.

Kind Regards,

Civil Design Drafter

Mott MacDonald

Units 11 & 12, First Floor, Block C, Trevor Pearcey House, 28-30 Traeger Court, Bruce ACT 2617 Australia www.mottmac.com

From:

Sent: To: Cc: 22 July 2013 15:50

Jeill. 22 o

Jatheendran, Lingam (Lingam.Jatheendran@act.gov.au)
Breen, Mike J; Lucia Carson (Lucia.Carson@act.gov.au); Grdur, Michael

(Michael.Grdur@act.gov.au);

Subject:

RE: TaMS Query - Rivett Section 28 Block 13

Hi Lingam,

Thankyou for your response. Mott MacDonald have prepared a proposed services plan (refer attached) for inclusion into the Site Investigation report on the following basis:

Stormwater Tie

Mott MacDonald have identified that there is an existing public 525dia stromwater line outside the eastern boundary of the Site within adjacent Section 27 Block 4 – Urban Open Space. This existing stormwater line is located on the low side of the Site. It is considered appropriate for the service tie for Section 28 Block 13 to connect into the existing manhole along this line at the lower eastern corner of the block as shown on the proposed services plan attached.

2. Path Connection

The existing footpath through the Site currently provides access from Rivett shops to the path network within the open space system as well as neaby playground facilities. It is proposed that the existing footpath through the Site be removed and offsite pedestrian facilities be improved by providing footpath continuity to the existing carpark servicing the oval. It is anticipated that the existing footpath south of the development Site could be utilised to access the path network and the playground from the Rivett shops.

3. Vehicle Access

An indicative location for vehicle access has been shown on the proposed service plan. This location is clear of the existing 90 degree parking spaces adjacent to the western boundary of the Site. This proposed driveway location is also clear of the circulation isle of the carpark which serves Rivett shops. Note that the indicative location will provide for a similar arrangement to the existing access driveway for Section 28 Block 15 which is adjacent to the Site.

Rivett Place is a public road and is classified as an access street. There is no visual indication of pavement failure within Rivett Place and it is therefore considered appropriate that waste vehicles utilise Rivett Place to service the waste requirements of the proposed development. The road width of Rivett Place at the proposed access is approximately 7.5m and the verge is approximately 5.5m. It is anticipated that this width should allow a waste vehicle entering the development Site to be perpendicular at the block boundary.

Kind regards,

Civil Engineer

Mott MacDonald

Units 11 & 12, First Floor, Block C, Trevor Pearcey House, 28-30 Traeger Court, Bruce ACT 2617 Australia www.mottmac.com |

T +61 (0)2 6253 1555 | F +61 (0)2 6253 1666 |

Mott MacDonald - Confidential Communication. This e-mail is confidential. If you are not the intended recipient, or you have received this e-mail in error, any use, dissemination, or copying is prohibited. Please destroy this transmission (including any attachments), and notify the sender by reply e-mail. Mott MacDonald takes care to ensure that data transmitted is appropriate and that the content is free from viruses or defects. However, we do not warrant that this communication is free from any viruses or defects. We deny any liability for loss or damage caused as a result of the receipt or use of this communication.

From: Jatheendran, Lingam [mailto:Lingam.Jatheendran@act.gov.au]

Sent: 18 July 2013 3:26 PM

To:

Cc: Grdur, Michael; Arul, Adrian; Breen, Mike J Subject: RE: TaMS Query - Rivett Section 28 Block 13

Hi

You have to carry out further investigation in relation to (1) existing storm water network in the vicinity to identify possible connection, (2) the current use of the existing footpath and the impact of removing them 3) identify the safe location for vehicular access and the impact on other facilities in the vicinity, (4) any other territory plan issues etc

Please note that TAMS has no knowledge of the subject site, it is the responsibility of the consultant to investigate all the issues in consultation with LDA. TAMS will provide comments once a report is produced.

Regards

Lingam Jatheendran

Chief Engineer

Asset Acceptance Section | Operational Support Branch | Directorate Services Division Territory & Municipal Services Directorate (TAMS) | ACT Government

물Ph: (02) 6207 6592 | 를 Fax: (02) 6207 7484

"Great Services - Quality Assets - Better Lifestyles"

From:

Sent: Friday, 28 June 2013 12:10 PM

To: Jatheendran, Lingam

Cc: Grdur, Michael; Breen, Mike J

Subject: TaMS Query - Rivett Section 28 Block 13

Hi Lingham,

Mott MacDonald is undertaking a Site Investigation Report on behalf the LDA for Rivett Section 28 Block 13. Mott MacDonald is not currently aware of any proposed development for the site however it is listed as a Community Facilities Zone under the Territory Plan.

The following is a brief explanation of the current stormwater and access arrangements indicated on the drawings:

- No stormwater tie for Block 13;
- No vehicular access for Block 13;
- A footpath through the site linking a trunk path and play ground to Rivett shops.

Could you please review the sketch attached and provide in-principal approval for:

- Stormwater maintenance hole and service tie;
- The demolition of a footpath through Block 13;
- A new footpath connection to the Rivett Oval car park; and
- Location of proposed vehicular access to the site

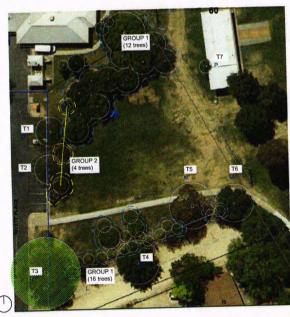
Please do not hesitate to contact me should you require anything further.

Kind Regards,

Civil Design Drafter

Mott MacDonald

Units 11 & 12, First Floor, Block C, Trevor Pearcey House, 28-30 Traeger Court, Bruce ACT 2617 Australia www.mottmac.com


T +61 (0)2 6253 1555 | F +61 (0)2 6253 1666 E

Mott MacDonald - Confidential Communication. This e-mail is confidential. If you are not the intended recipient, or you have received this e-mail in error, any use, dissemination, or copying is prohibited. Please destroy this transmission (including any attachments), and notify the sender by reply e-mail. Mott MacDonald takes care to ensure that data transmitted is appropriate and that the content is free from viruses or defects. However, we do not warrant that this communication is free from any viruses or defects. We deny any liability for loss or damage caused as a result of the receipt or use of this communication.

This email, and any attachments, may be confidential and also privileged. If you are not the intended recipient, please notify the sender and delete all copies of this transmission along with any attachments immediately. You should not copy or use it for any purpose, nor disclose its contents to any other person.

Appendix D. Tree Assessment

PLEASE NOTE TREE LOCATIONS & NUMBERS WERE LOCATED ACTPMAPI 2012 AERIAL AND PLEASE NOTE THEE LUCATIONS & NUMBERS WERE LOCATED ACTPMAPI 2012 AERIAL AND WERE VERIFIED FROM SITE INSPECTION UNDERTAKEN BY ENVIRO LINKS DESIGN PTY LTD. JUNE 2013 WHEN TREES WERE DORMANT & IDENTIFYING FEATURES NOT EXHIBITED. TREE NUMBERS ALLOCATED BY ENVIRO LINKS DESIGN.

TREES ASSESSED BY GROUP as being of similar species and attributes (eg. size, health, stage)

VALUE RANKING: INDIVIDUAL TREES
The delineation within the value classification is based on the works being on leased land and therefore under the jurisdiction of the TaMS Urban TreeScapes Unit (UTU) All trees on Government Land are regarded as protected trees and can not be removed or damaged or works undertaken near them regarded as protected frees and can not be removed or damaged or works distortions are therefore, applicable without the approval of the UTU. (The Tree Act, and Regulated Tree definitions are therefore, applicable to leased site, unless otherwise advised).

EXCEPTIONAL VALUE (PROTECTED TREE) - trees that are outstanding examples of their species and have significant visual impact. They have most of the following: mature specimens with grand appearance and stature; may have unusual character, may be a rare species; well balanced; cultural hertage importance; significant scientific value; presents a low hazard/safety risk. Significant value within the landscape context of the site and should be preserved.

HIGH VALUE (PROTECTED TREE) - trees that are good examples of their species and have significant HIGH VALUE (PROTECTED TREE) - trees that are good examples or men's species and nave significant visual impact. They have most of the following-high arboricultural value or potentials good form; healthy specimens with good size and title or no epicormic shoots or other arboricultural problems. Good value within the landscape context of the site and should be preserved if at all possible.

MEDIUM VALUE (PROTECTED TREE) - trees generally complying with most of the following: reasonable form or reasonable current size with good health / growth potential; healthy specimen with significant growth (or with moderate tree surgery a large tree can be modified from fair to good health, in can carry some deadwood; has value within the landscape context of the site; presents a medium to low hazard/safety risk. Does not justify special attention of construction expenditure but justifies a minor design adjustment to save or could be removed if necessary. Retain if appropriate to land use and future management cost and risks.

POOR VALUE (PROTECTED TREE) - trees generally complying with most of the following: specimen with low growth or poor form and possible health problems; trees of little value; presents a high or very high hazard/safety flsk. Expendable, remove if necessary - retain if appropriate to land use and future management costs and risks.

LOW VALUE (UN-PROTECTED TREE) - non-significant tree under the 2005 Tree Protection Act. Trees therefore can range from well established quality trees to poor health small trees of no significance. Some possibly with important landscape impact (e.g. regeneration) or future growth potential to contribute to the landscape in future years. Expendable, remove if necessary - retain if appropriate to land use and future management costs and risks.

DEAD TREE

FHMPD

TREE ASSESSMENT ELEMENTS

per: Unique and sequential identification number

Number: Unique and sequential identification number
Name: Botanical nameHeight: (m)
Tamb: circumference (m) at 1 mere above natural ground level
Cartopy: Diameter (m) at the fact potent from the trunk (m)
Cartopy: Diameter (m) at the fact potent from the trunk (m)
Cartopy: Diameter (m) at the fact potent from the trunk (m)
Collects: I Pose. Structural defects or evidence of Internal decay
Damage: Obstutbance: Evidence of past clamage to the tree or disturbance within the root zone
Diaesas: Evidence of past or present classes or insect intestation:
Stage: Current growth stage (e.g., juvenile, semi-mature, mature or over mature).
Stage: Current growth stage (e.g., juvenile, semi-mature, mature or over mature).
Couldity: Tree quality classification trees are to be classified as being of Exceptional (E), High (H), Medium (M).
Tree Act Status, Fefor notes below

Tree 'Regulated' Status by Virtue of Size (On - Lease)

Index the Tree Protection Act 2005 a tree is termed a Regulated Tree and is to be protected if it is growing on Urban Leased land and has at least one of

* A height of 12m or more; or
* A truck circumference of 1.5m (approx 0.5m in diameter) or more at 1m above ground level; or
* A truck circumference of 1.5m (approx 0.5m in diameter) or more at 1m above ground level, is 1.5m or more, or
* Two or more trunks and the total circumference of all the trunks, 1m above ground level, is 1.5m or more, or
* A rahimum crown width of 12m or more, and
* A trahimum crown width of 12m or more, and
* A trahimum crown width of 12m or more, and
* A trahimum crown width of 12m or more, and
* A trahimum crown width of 12m or more, and
* Is not a weed species under the Pest Plant & Animals Declaration 2005

Tree Protected Status
YES - The tree has a dimension that any activity must be assessed under the Tree Protection Act on Leased land; or is on Government land

YES - The tree has a dimension that any activity must be assessed under the Tree Protection Act on Leased land; or is on Government land eg. road verge, park, etc as all trees on Government land are protected.
NO - The tree if no Leased land is sufficiently small or declared a Weed Species that it does not require assessment under the Tree Protection AG. Not applicable as Off Lease but often protected as these trees are generally on Government (Unleased) land.

Trees nominated as Protected can only be removed / pruned if approval in writing gained from all applicable Government agencies.

Future Tree Approvals

On Leased land: If a tree has protected status then approval must be gained from TaMS Urban TreeScapes Unit prior to removal, lopping or ground damaging activty.

Off-Leased (Territory) land: Please note all trees located external to the leased block boundary i.e. the verge or open space, cannot be removed, pruned or damaged without the approval of the Urban TreeScapes Unit, City Services (13 22 81) as on Government land.

<u>Tree Management:</u>
Trees within lease require a Tree Management Plan (TMP) and on the verge a Landscape Management Protection Plan (LMPP) outlining removals, pruning, tree protection measures, site access and restorative works issues as part of the design process.

TREE ASSESSMENT REPORT
BLOCK 13 OF SECTION 2E CONTAINS A MIX OF DECIDIOUS EXCITIC TREES AND EVERGREEN NATIVES, THE SITE IS GRASSED
HIROUGHOUT DECONTRAINS A MIX OF DECIDION OF CONCRETE FOOT PATHS AS SHOWN.
HIROUGHOUT OF CONTRAINS AS MIX OF CONTRAINS AS SHOWN.
HIROUGHOUT ON THE DE YOU BOULARDS, SOME POINTS ARE ACCESSIBLE TO CONSTRUCTION & MAINTENANCE VEHICLES WHO
USE THE PRAM CROSSING TO PARK UP ON THE VERGE AND WITHIN THE BLOCK, EVIDENT WHERE WORN AND COMPACTED
AS SHOWN AS BROWN AREAS IN AERIAL.

MATURE MEDIUM & HIGH QUALITY RATED Eucelyptus mannifera & E. sideroxylon 'Rosea' TREES 3 & 5 APPEAR TO BE GROWING & ARE IN GOOD HEALTH.

GROUP 1 TREES ARE SEMI - MATURE Ulmus parvifolia. THESE TREES HAVE BEEN PLANTED AS A STAND WITHIN A RELATIVELY TIGHT PLANTING ARRANGEMENT. AS SUCH, SOME TREES WITHIN THE STAND ARE SUPPRESSED & OR HAVE LEANING / UNDER DEVELOPED CANOPIES.

SELECTIVE THINNING MAY BE AN ADVANTAGE TO ALLOW SOME INDIVIDUAL IMPROVED LARGER TREE FORMS

TREE ASSESSMENT SCHEDULE

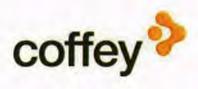
ELD	Botanical Name	Height (m)	No. Trunks	circ.	Canopy dia. (m)	Health and Vigour	Structural defects and decay	Past Damage or root disturbance	Disease or infestation	Stage Juvenile (J),	Quality Rating Low (L), Poor (P),	Protected Status Unleased Land
No.				(m)		(G-good, F-fair, P-poor, DW- deadwood, EPI-epicormic growth)	(OC- occluded fork, AGL- Above Ground Level)	(AGL - Above Ground Level)	(AGL - Above Ground Level)	Semi-mature (SM), Mature (M), Over mature (OM))	Medium (M), High (H), Exceptional (NOTE: Quality Rating also noted with (E) specify an exceptional rating due to heritage listed	(Yes -TaMS) <u>Tree</u> <u>Act</u> (Yes - Y, No - N) - Note: N* denotes a tree <u>not</u> regulated due to ACT
G1	Ulmus parvifolia	5 - 10.	1	0.55-	5 - 10.	Good	None apparent	Some past up pruning of lower canopy	None apparent	Semi - Mature	Low	No
		4-5.	1	0.55	4	Fair, some dead branches / trunks	None apparent	Some past up pruning of lower canopy	Some have rotted / dead stem	Semi - Mature	Low	No
G2	Prunus sp.	4-5.	1	0.55	4	Fair, some dead branches / trunks	None apparent	Some past up pruning of lower canopy	None apparent	Semi - Mature	Low	No
G3	Prunus sp.		1	1		Good	None apparent	Some past up pruning of lower canopy	None apparent	Mature	Low	No
1	Zelkova serratta	8.5	1	1			None apparent	Some past up pruning of lower	None apparent	Mature	Low	No
2	Zelkova serratta	8.5	1	1	8	Good	None apparent	canopy	None apparent	Mature	High	Yes
3	Eucalyptus sideroxylon 'Rosea'	11	1	2.5	14	Good	None apparent	None apparent	None apparent		-	Yes
4	Quercus robur	11	1	1.5	10	Good	None apparent	None apparent	None apparent	Mature	Medium	
4				1.0	1	Good, slight lean to North West	None apparent	None apparent	None apparent	Mature	Medium	Yes
5	Eucalyptus mannifera'	10.5	1	1.3	14			Some past up pruning of lower	None apparent	Mature	Medium-	Yes (multi trunk)
6	Ulmus sp.	10	4	2.5	12		None apparent	canopy	None apparent	Mature	Medium-	Yes (multi trunk
7	Ulmus sp.	7	4.00	2	5	Fair, multi trunk suckering right up against building	None apparent	None apparent	None apparent			finalti trans

Ξ				
				-
A	For Information	JN.		17/6/13
NO	DESCRIPTION	DWN	APP'D	DATE

nction with all relevant contracts, specifications, reports, drawings an val conditions, Obtain any outstanding statutory approvals prior to

ANDSCAPE ARCHITEC

BLOCK 28 SECTION 13 RIVETT


TREE ASSESSMENT PLAN

SCALE 1:1000 @ A3	ter	NORTH
JOB NO. 1317	DWG NO. TA-01	ISSUE A

Appendix E. Contamination/Geotechnical Reports

- **Phase 1 Preliminary Contamination Report** E.1.
- **Geotechnical Investigation** E.2.

PRELIMINARY CONTAMINATION ASSESSMENT BLOCK 13 SECTION 28, RIVETT, ACT

Prepared for:

Land Development Agency

TransACT House 470 Northbourne Avenue Dickson ACT 2602

Report Date: 24 July 2013

Project Ref: GEOTFYSH09656AA

Written/Submitted by:

Reviewed/Approved by:

Senior Environmental Consultant

Principal Environmental Engineer

Coffey Environments Australia Pty Ltd ABN 65 140 765 902 16 Mildura Street Fyshwick ACT 2609 Australia PO Box 152 Fyshwick ACT 2609 Australia T (+61) (2) 6260 7288 F (+61) (2) 6260 7211 www.coffey.com.au

24 July 2013

Land Development Agency

TransACT House 470 Northbourne Avenue Dickson ACT 2602

Attention: Lucia Carson

Dear Lucia

RE: Preliminary Contamination Assessment, Block 13 Section 28, Rivett, ACT

Coffey is pleased to present this report on the Preliminary Contamination for the above site.

We draw your attention to the attached sheets titled "Important Information about your Coffey Environmental Report" which should be read in conjunction with this report.

Thank you for your commission for this work and we look forward to the opportunity of being of assistance with future stages of work at this site. If you require further information or clarification regarding any aspect of this report, please do not hesitate to contact Nick Davison or the undersigned.

For and on behalf of Coffey Environments Australia Pty Ltd

Principal Environmental Engineer

RECORD OF DISTRIBUTION

No. of copies	Report File Name	Report Status	Date	Prepared for:	Initials
1	GEOTFYSH09656AA-R01.pdf	Final	24 July 2013	LDA	ND
1	GEOTFYSH09656AA -R01.pdf	Final	24 July 2013	Coffey	ND

CONTENTS

LIST	OF ATTACHMENTS	- 1
ABBI	REVIATIONS	11
EXE	CUTIVE SUMMARY	III
1	INTRODUCTION	4
1.1	Background	4
1.2	Objectives	4
1.3	Scope of Work	4
2	SITE LOCATION AND LANDUSE	6
2.1	Site Location	6
2.2	Topography and Drainage	7
2.3	Local Geology and Soils	7
2.4	Regional Hydrogeology and Groundwater Usage	8
3	SITE HISTORY	9
3.1	General	9
3.1.1	Historical Aerial Photographs	9
3.1.2	ACT Environment Protection Authority Records	14
3.1.3	ACT Office of Regulatory Services Records	14
3.1.4	Land Titles and Historical Documents Database	14
3.1.5	Review of Groundwater Bore Records	14
3.1.6	Site Interview Information	14
3.2	Summary of Site History	15
4	INTEGRITY ASSESSMENT OF HISTORICAL DATA	16
5	SITE WALKOVER	17
6	POTENTIAL AREAS OF ENVIRONMENTAL CONCERN AND CONTAMINANTS OF POTENTIAL CONCERN	18

CONTENTS

7	SAMPLING PLAN	19
8	ASSESSMENT CRITERIA	20
8.1.1	Soil Headspace Screening Criteria	20
8.1.2	Health Investigation Levels (HILs)	21
9	FIELDWORK AND LABORATORY ANALYSIS	24
9.1	Soil Sampling	24
9.2	Laboratory Schedule	24
9.2.1	Quality Assurance/Quality Control (QA/QC)	25
10	RESULTS	26
10.1	Generalised Subsurface Conditions	26
10.2	Headspace Screening Results	26
10.3	Laboratory Analysis Results	26
10.3.1	Quality Assurance/Quality Control	26
10.3.2	Comparison of Results to Adopted Site Assessment Criteria	27
11	CONCLUSIONS AND RECOMMENDATIONS	28
12	LIMITATIONS	29
13	REFERENCES	30

LIST OF ATTACHMENTS

Important Information About Your Coffey Environmental Report

Tables (within text)

Table 1: Summary of Site Identification Information

Table 2: Summary of Historical Aerial Photograph Review

Table 3: Generalised Headspace Screening Criteria

Table 4: Adopted Site Assessment Criteria

Table 5: Laboratory Analysis Schedule

Tables (end of text)

Table LR1: Soil Analysis Results

Figures

Figure 1: Site Locality and Investigation Locations

Appendices

Appendix A: Historical Aerial Photographs

Appendix B: Territory Plan 2012 - CF Zone

Appendix C: ACT EPA Record Search

Appendix D: ORS Dangerous Goods Search

Appendix E: Historical Documents

Appendix F: ACT EPWRD Groundwater Bore Search Response

Appendix G: Site Photographs

Appendix H: Test Pit Logs

Appendix I: Laboratory Documentation

ABBREVIATIONS

ACM	Asbestos Containing Materials		
ACT	Australian Capital Territory		
ACT EPA	Australian Capital Territory Environmental Protection Authority		
ACT EPWR	Australian Capital Territory Environment Protection and Water Regulation		
ACT PLA	Australian Capital Territory Planning and Land Authority		
AEC	Area of Environmental Concern		
AHD	Australian Height Datum		
ВТЕХ	Benzene Toluene Ethylbenzene Toluene		
COPC	Contaminant of Potential Concern		
ESDD	Environment and Sustainable Development Directorate		
HIL	Health Investigation Level		
HSL	Health Screening Level		
GPS	Geographical Positioning System		
LDA	Land Development Agency		
NSW OEH	New South Wales Office of Environment and Heritage		
ors	Office of Regulatory Services		
ОСР	Organochlorine Pesticides		
OPP	Organophosphorus Pesticides		
PAH	Polycyclic Aromatic Hydrocarbons		
PID	Photoionisation Detector		
ГР	Test Pit		
TRH	Total Recoverable Hydrocarbons		
UST	Underground Ground Storage Tank		

EXECUTIVE SUMMARY

Coffey was commissioned by the Land Development Agency (LDA) to undertake a preliminary contamination assessment of Block 13 Section 28, Rivett, ACT (the Site).

The objective of the work was to provide geotechnical and contamination assessment information to permit due diligence to be carried out for the Site.

The objectives of the assessment were to:

- Assess the potential for contaminating activities to have been carried out at the site that may have caused land contamination; and
- Provide recommendations on further investigations which may be required to supplement the geotechnical review and preliminary contamination assessments (if any).

Coffey undertook a desktop study, site walkover and soil sampling, to assess, at a preliminary level, the potential for soil contamination to be present at the Site. The results of the brief site history study generally indicated that the site was unlikely to have been subject to contaminating activities associated with the historical activities conducted on and nearby the Site. The site appeared to have been generally vacant since at least 1975. A data gap was noted where aerial imaging was not available prior to 1975 but the site appears to not have been developed.

Coffey excavated five test pits to a maximum depth of 1.3m across the Site. No visual, olfactory or screening indications were observed during the soil investigations. All soil samples analysed indicated that concentrations of the contaminants of potential concern tested were below the adopted site assessment criteria for residential land use.

As a result of the investigations conducted during this preliminary assessment, the likelihood of contamination to be present on Site is considered to be low. Further assessment could be carried out to increase the level of confidence in the potential presence of contamination; otherwise an unexpected finds procedure may be able to be adopted for the site during redevelopment to manage contamination should it be identified.

This report must be read in conjunction with the attached "Important Information About Your Coffey Environmental Report" and the statement of limitations in Section 9 of this report.

1 INTRODUCTION

1.1 Background

Coffey was commissioned by the Land Development Agency (LDA) to undertake a preliminary contamination assessment of Block 13 Section 28, Rivett, ACT (the Site).

The work was completed in general accordance with our proposal Ref: GEOTFYSH09656AA-P02, dated 30 May 2013. The work was commissioned and carried out concurrently with a geotechnical assessment which is reported separately.

We understand that the LDA is the current leaseholder of the property and requires an assessment of the status of the Site with regard to contamination and geotechnical issues for future development.

1.2 Objectives

Coffey understood the objective of this project was to provide geotechnical and contamination assessment information to permit due diligence to be carried out for the Site.

The objectives of this assessment were to:

- Assess the potential for contaminating activities to have been carried out at the site that may have caused land contamination; and
- Provide recommendations on further investigations which may be required to supplement the geotechnical review and preliminary contamination assessments (if any).

1.3 Scope of Work

Coffey undertook the following scope in accordance with Act Government (Nov 2011) *Information Sheet 7 - Guidance for undertaking preliminary contamination investigations for development purposes*:

- A preliminary desk study to assess site conditions and identify potential areas of environmental concern (AEC) and contaminants of potential concern (COPC), comprising:
 - Review of local published geology, hydrogeology and hydrology;
 - Review of historic aerial photographs held by Surveying and Spatial Data, Environment and Sustainable Development Directorate (ESDD);
 - Contaminated Land Search of records held by the ACT Environment Protection Authority (ACT EPA), ESDD;
 - Review of Office of Regulatory Services records;
 - Bore search of records held by the Environment Protection and Water Regulation, ESDD;
 - Review of historic plans and/or records held by other ACT Government and Commonwealth Government Departments;
 - Review of current and former uses of the site; and
 - Discussions with current and past land managers (if practicable), lessees and site users.
- A site visit to visually assess potential sources of contamination, indications of ground disturbance (such as filling activities) and other visual/olfactory indications of potential contamination, observe

surrounding land uses, topography, drainage, nearby sensitive environments, to add to potential AECs and COPCs;

- The collection and analysis of selected soil samples from geotechnical test pits excavated at the Site;
- Preparation of a Preliminary Contamination Investigation report in general accordance with the requirements set out within the Contaminated Sites Environment Protection Policy, Environment Protection Authority (ACT EPA 2009) and Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (NSW OEH, 2011); and
- Liaison with ACT EPA to obtain written endorsement of this Preliminary Contamination Assessment.

2 SITE LOCATION AND LANDUSE

2.1 Site Location

A summary of the Site identification information is presented in Table 1 below. The Site locality is shown in Figure 1.

The Site is an irregularly shaped parcel of land, predominantly well grassed and vacant, fronted by the Rivett Sporting fields to the east, Rivett Place and the Rivett shops to the west and the Salvation Army disposal store and the Reformed Church of Canberra to the north and south, respectively. Coffey inferred the site boundaries based on site features encountered during the walkover. A fence line or other structures were not present to clearly define the boundary.

The Site contains an unsealed access road which services the Sporting field amenities. A Site layout plan is presented in Figure 1. Historical aerial photographs showing the Site and surrounding land use are presented in Appendix A.

Table 1: Summary of Site Identification Information

Street Address	Rivett Place, Rivett, ACT	
Title Identifiers	Block 13, Section 28	
Area	Approx. 2,550m ²	
Grid Co-ordinates (Aust. Map	North	685 136m E 6 086 597m N
Grid) (Approx)	South	685 137m E 6 086 538m N
	East	685 150m E 6 086 574m N
	West	685 106m E 6 086 557m N
District/Division Name	Weston Creek/Rivett	

Table 1 (Continued): Summary of Site Identification Information

Zoning and permitted uses (refer Appendix B for permitted uses list)	CF – Community Facilities	
Current Owner(s)	Land and Development Agency	
Current Site Use(s)	Block 13 is currently vacant	
Surrounding Land Use	North	Sporting field sealed car parking area fronting Rivett Sporting fields and Burrangiri Respite Centre
	South	Unsealed car parking associated with the Reformed Church of Canberra
	East	Rivett Sporting Fields and amenities
	West	Rivett Place separates the Site from car parking associated with the Rivett Shops

2.2 Topography and Drainage

The western portion of the Site slopes gently to the east; from the higher western portion adjoining the Rivett Shops car park and Rivett Place. The Site grades to relatively level with minor surface undulations in the east where it meets the Rivett Sports field and amenities. Topographical information provided in ACT Planning and Land Authority's online interactive mapping service (ACTmapi) indicates the Site lies at an elevation between 606m to 609m above Australian Height Datum (AHD).

Municipal storm water pits were observed in the Rivett Shops car park to the west of the Site and in the Sports field car park to the north. Some infiltration of surface water is expected to occur within the unsealed and vegetated portions of Site, with runoff diverted to municipal storm water system. Ultimately, surface water runoff is expected to discharge to Weston Creek (approx. 950m east of Site) via the municipal storm water system.

2.3 Local Geology and Soils

The 1:50,000 Geology Map of Canberra, Queanbeyan and Environs (Russell 1980) indicates that the Site is underlain Silurian age Deakin Volcanics comprising various tuffs, rhyolite, rhyodacites and agglomerates.

Jenkins (2000) describes the soils of the Site as the transferral landscape *Burra*, with soils identified as typically shallow well drained Rudosols (Lithosols) and Tenosols (Lithosols/Earthy Sands) on crests and upper slopes with moderately deep, moderately well drained Red Kurosols (Red Podzolic soils) and Red Kandosols (Red Earths) on mid- to lower-slopes. Moderately deep, slowly to moderately well drained Brown Chromosols (Yellow Podsolics Soils) and Brown Kandosols (Yellow Earths) are prevalent along drainage lines.

2.4 Regional Hydrogeology and Groundwater Usage

The 1:100,000 scale hydrogeological map *Hydrogeology of the Australian Capital Territory* (Evans 1984) indicates the site is located on late Silurian Deakin Volcanics comprising various tuffs, rhyolite, rhyodacites and agglomerates. Water quality tends to be variable to poor with dissolve solids concentration less than 500mg/l and a water yield of 0.5-1.0l/s.

The nearest surface water receptor is Weston Creek which is located approximate 950m to the east of the Site. Groundwater levels are inferred to be at a depth approximately similar or slightly higher than the average surface level of Weston Creek (at approximately RL 590m AHD) and are likely to flow in an easterly to north-easterly direction. Groundwater is therefore expected to be at depths greater than 10m below ground surface.

3 SITE HISTORY

3.1 General

Information on the Site history was obtained from the following sources:

- Review of historic aerial photographs held by Surveying and Spatial Data, Environment and Sustainable Development Directorate (ESDD);
- Contaminated Land Search of records held by the Environment Protection Authority (EPA), ESDD;
- Review of Office of Regulatory Services records;
- Bore search of records held by the Environment Protection and Water Regulation, ESDD;
- Review of historic plans and/or records held by other ACT Government and Commonwealth Government Departments; and
- Discussions with current and past land managers (if practicable), lessees and site users.

3.1.1 Historical Aerial Photographs

Four historical aerial photographs were received from ACT Planning and Land Authority (ACT PLA) covering a period between 1975 and 2004. Post 2004, imagery available from Google Earth was reviewed with imagery available for 2005, 2006, 2008, 2009, 2011, 2012 and 2013. Table 2 below presents a summary of observations made following the historical aerial photographs (1975 – 2004) are presented in Appendix A.

Table 2: Summary of Historical Aerial Photograph Review

Image Date	Observations
1975	Condition
	The Site appears to be cleared and vacant with construction of the Reformed Church of Canberra building underway to the Site's south. The Rivett shops are visible although the Respite Centre to the Site's north is yet to be constructed.
	Uses
	The Site appears vacant and is possibly utilised as an access point for construction to the south.
	Water Courses
	No water courses are apparent in the 1975 image.
	Structures
	No Buildings are evident on Site.
	Surrounding Lands
	North – A car parking area fronts the western extent of the Rivett Sporting Fields and cleared vacant land comprises the majority of lands to the north of Site.
	South – Construction of the Reformed Church of Canberra building is currently underway in the 1975 image.
	East – The Rivett Sporting Field is apparent although no amenities are evident in the 1975 image.
	West – The Rivett Shops are apparent along with Rivett Place and the Rivet Shops car park in its current alignment.

Table 2 (Continued): Summary of Historical Aerial Photograph Review

Image Date	Observations
1985	Condition
	The Site appears well grassed and vacant.
	<u>Uses</u>
	The Site appears vacant.
	Water Courses
	No additional changes are evident.
	Structures
	No additional structures are evident, nor is it apparent that any have been removed since 1975.
	Surrounding Lands
	North – The Rivett Sporting Field amenities blocks are evident along with the sealed car park servicing Rivett Sports Fields.
	South – The Reformed Church of Canberra building is present in what appears to be its current configuration.
	East – The Rivet Sporting Fields and amenity block has been constructed in the period 1975 - 1985.
	West - No changes to the Rivett Shops (or associated parking) are evident.

Table 2 (Continued): Summary of Historical Aerial Photograph Review

Image Date	Observations		
1995	Condition		
	The Site appears mostly well grassed and vacant. A trafficked area is apparent to the rear of the Rivet Sports Field amenity block. Landscaping of the northeastern corner is apparent with a stand of trees now present linking the Sporting Field car park with Rivett Place.		
	Uses		
	The Site is vacant.		
	Water Courses		
	No additional changes to the Site's (or surrounding) hydrology are evident.		
	Structures		
	No additional structures are evident, nor is it apparent that any have been removed since 1985.		
	Surrounding Lands		
	North – The Rivett Sporting Field amenities blocks are evident along with the sealed car park servicing Rivett Sports Fields. The Aged Respite Care Centre has been constructed in the period 1985 - 1995		
	South – The Reformed Church of Canberra building is present in what appears to be its current configuration.		
	East – No changes to the Sporting fields (or associated amenities or parking) are evident.		
	West – No changes to the Rivett Shops (or associated parking) are evident.		
2004	Condition		
	No changes to the Site's (or surrounding) condition are evident.		
	Uses		
	The Site appears vacant.		
	Water Courses		
	No additional changes are evident.		

Table 2 (Continued): Summary of Historical Aerial Photograph Review

Image Date	oservations			
2004	Structures			
	No additional structures are evident, nor is it apparent that any have been removed since 1995.			
	Surrounding Lands			
	North – No additional structures are evident, nor is it apparent that any have been removed since 1995.			
	South – No additional structures are evident, nor is it apparent that any have been removed since 1995.			
	East – No changes to the Sporting fields (or associated amenities or parking) are evident.			
	West – No changes to the Rivett Shops (or associated parking) are evident.			
2005-2013 (Google	Condition			
Earth Review)	No major changes in Site condition are apparent.			
	<u>Uses</u>			
	No apparent changes in Site use are apparent.			
	Water Courses			
	No additional changes to the Site's (or surrounding) hydrology are evident.			
	Structures			
	No additional structures are evident, nor is it apparent that any have been removed since 2004.			
	Surrounding Lands			
	North – No additional structures are evident, nor is it apparent that any have been removed since 1995.			
	South – No additional structures are evident, nor is it apparent that any have been removed since 1995.			
	East – No changes to the Sporting fields (or associated amenities or parking) are evident.			
	West – No changes to the Rivett Shops (or associated parking) are evident.			

3.1.2 ACT Environment Protection Authority Records

Coffey submitted a request to the ACT EPA on 24 June 2013 for a search of records held pertaining to the Site. ACT EPA indicated Block 13 Section 28 is not recorded on the ACT EPA's contaminated sites database or geographic information system and EPA has not issued any environment protection orders for the Site under section 91C(1), 91D(1) or 125(4) of the *Environment Protection Act 1997*.

A copy of the correspondence received from ACT EPA, referenced as 97/5032 is provided as Appendix C.

3.1.3 ACT Office of Regulatory Services Records

A search of the Dangerous Goods Database and Dangerous Substances Register maintained by the Office of Regulatory Services was undertaken to evaluate whether dangerous substances have been stored at the site. The findings of this search indicate that there are no records of dangerous substances being stored at this Site. However, as standard practice, Coffey notes that under the Dangerous Goods Act 1975 (1975 to April 2004), tanks of 50,000L which contained diesel were not required to be licensed with WorkCover, only if the capacity was 50,001L and above.

A copy of the correspondence re received from ORS, dated as 28 June 2013 is provided as Appendix D.

3.1.4 Land Titles and Historical Documents Database

A review of the ACT Office of Regulatory Services Land Titles and Historical Documents database ("Tarquin") indicates the following:

- No title issued for Block 13 Section 28 Rivett; and
- The Block is therefore classified as 'Administrative Parcel No Title Issued'.

The client's representative (Mott Macdonald Hughes Trueman) provided historical documentation (circa 1969) that identified a former drainage line entering the Site's eastern boundary from the adjoining Rivett Sports fields. The documentation appears to identify the local storm water network although it is not clear if the drainage line was filled as part of these works or at a later date (i.e. pre-1975). A copy of the sketch is provided as Appendix E.

3.1.5 Review of Groundwater Bore Records

A search of groundwater bores by ACT Government, Environment and Sustainable Development Directorate indicated that there were no registered water abstraction bores are present within 1 km radius around the Site. Correspondence received from ACT ESDD, dated 24 June 2013 is provided as Appendix F.

3.1.6 Site Interview Information

No additional practical sources of anecdotal historical information were identified during the course of this assessment.

3.2 Summary of Site History

The following is a summary of the history of the site:

- The Site appeared to have been cleared and vacant since at least 1975. No structures have been noted on site since 1975; and
- Between 1975 and 2013, the general area has been unchanged with the Site remaining vacant and grass covered with the exception of vehicle trafficking during construction of the Reformed Church of Canberra building and currently, servicing the Sports fields amenity building.

4 INTEGRITY ASSESSMENT OF HISTORICAL DATA

The following sources of historical data were relied upon for this assessment:

- Information provided by the Principal client (LDA) and the client's representatives;
- Historic aerial photographs held by Surveying and Spatial Data, Environment and Sustainable Development Directorate (ESDD) and Google Earth;
- · Records and Historical aerial imagery held by the Environment Protection Authority (EPA), ESDD;
- Records held by Office of Regulatory Services;
- · Groundwater Bore records held by the Environment Protection and Water Regulation, ESDD;
- Historic plans and/or records held by other ACT Government and Commonwealth Government Departments.

The observations made during the walkover were generally consistent with the records provided by third parties.

Based on the information retrieved as part of this assessment, some gaps are noted in the site history information and are as follows:

Information on the history of the site prior to 1975 was not well documented. No definitive
information or imagery was available regarding the status or use of the Site prior to 1975. It is likely
the Site was cleared circa 1920 as part of the development of Canberra. It is possible that light
agricultural activities/grazing were conducted onsite following clearing.

5 SITE WALKOVER

An environmental scientist made observations of the site during a site walkover and the excavation of test pits on 5 July 2013. A summary of observations made during this walkover and subsurface investigation is provided below with Site photographs in Appendix G.

The following site features were observed during the site walkover:

- The Site was a vacant and predominantly well grassed with a filled (i.e. road base) access road located behind the Rivett Sports Field amenity building (refer Photograph 1);
- The Site sloped gently in the western portion descending from Rivett Place to the relatively level Rivett Sports Fields (refer Photograph 2);
- Indications of minor cut/fill earthworks (refer Photograph 3) were apparent based on the local topography of the Site (i.e. gentle benching of areas within the western portion of the Site associated with Rivet Place and the Rivett Shops car park);
- Vegetation was restricted to individual mature trees along the Site's western and northern boundaries (refer Photograph 4);
- No indications of anthropogenic fill were observed during the site walkover;
- No potential asbestos containing material (ACM) was observed during the site walkover;
- No surface indications of existing or former aboveground or underground storage tanks (AST and UST respectively) were noted on the Site; and
- No apparent visual indications of site contamination were observed during this site walkover.

6 POTENTIAL AREAS OF ENVIRONMENTAL CONCERN AND CONTAMINANTS OF POTENTIAL CONCERN

The site history study did not directly identify potentially contaminating activities to have occurred on or nearby the site that would suggest the potential for contamination to exist. The integrity assessment noted that historical data (particularly in the form of aerial imagery) was not available prior to 1975, therefore there is a data gap and the potential for some form of contaminating activity to have occurred cannot be totally excluded.

7 SAMPLING PLAN

The NSW EPA (1995) Sampling Design Guidelines recommend about eight sampling location to assess a site with an area of about 2,550m³ with respect to contamination, subject to the results of the site history. For this assessment, preliminary soil sampling and analysis was carried out from five geotechnical test pit locations. The test pits were used to assess the likely subsurface conditions at the site and were located to gain reasonable site coverage.

The samples were selected for analysis based on field observations for a suite of potential contaminants.

8 ASSESSMENT CRITERIA

8.1.1 Soil Headspace Screening Criteria

For the purposes of this report the generalised headspace screening criteria presented in Table 4 have been used as a guide to the potential for volatile hydrocarbon contamination. These criteria have been developed by Coffey based on our experience (where monitoring for volatile organic compounds has occurred) to assist in the assessment of hydrocarbon contamination levels in soil. It is important to note that these generalised criteria are only a guide and that the PID has a different response to different contaminants.

Table 3: Generalised Headspace Screening Criteria

PID reading as ppm isobutylene	Generalised soil vapour content description relating to volatile petroleum hydrocarbon contamination
<20 ppm	NEGLIGIBLE
20 to 60 ppm	LOW
60 - 300 ppm	MODERATE
>300 ppm	SIGNIFICANT

8.1.2 Health Investigation Levels (HILs)

The soil investigation levels presented in National Environment Protection (Assessment of Site Contamination) Measure (2013) Schedule B(1)' Investigation Levels for Soil and Groundwater, NEPC are the criteria used in ACT for chemical contaminants in soil.

The Site is currently zoned CF Community Facilities as per http://www.actmapi.act.gov.au/home.html. A criterion of "no asbestos detected" has been adopted as a screening level for assessing soil asbestos analytical results. If asbestos was detected, the Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia, May 2009 prepared by the Western Australian Department of Health, which is endorsed by ACT EPA, are to be considered where applicable.

The results of soil analyses of samples obtained from the Site will be assessed against the Health based threshold concentrations for Residential land use, Column A (HIL A – Residential with garden/accessible soil (home grown produce < 10% fruit and vegetable intake (no poultry), includes child care centres, preschools and primary schools). For petroleum hydrocarbons, we have adopted conservative screening criteria of the laboratory reporting limit. Health screening levels are available for vapour intrusion and ecological investigation levels in the NEPM and would be used if required. Results have also been compared to NSW EPA (1994) Guidelines for Assessing Service Station Sites.

Ecological Investigation Levels are available for some contaminants and discussed in NEPM (1999). The most conservative concentration for each contaminant has been adopted as initial screening criteria, above which further assessment would be required.

A summary of the adopted soil investigation levels is presented in Table 4.

Table 4: Adopted Site Assessment Criteria

Analyte	Health-based Investigation Levels (HILs) (mg/kg) HIL A	Ecological Investigation Levels (EILs) (mg/kg) Urban Residential and public open space	
METALS / METALLOIDS (Total)			
Arsenic	100 ¹	100 ^{2a}	
Cadmium	20 ¹		
Chromium ^{1a}	100 ¹	190 ^{2a}	
Copper	6,000 ¹	60 ^{2a}	
Lead	300 ¹	1,100 ^{2a}	
Mercury (inorganic)	40 ¹		
Nickel	400 ¹	30 ^{2a}	
Zinc	7,400 ¹	70 ^{2a}	
ORGANICS			
Aldrin + Dieldrin	6 ¹		
Chlordane	50 ¹		
DDT	-	180 ^{2a}	
DDT + DDD + DDE	240 ¹		
Heptachlor	61		
Endosulfan	270 ¹		
Endrin	10 ¹		
Heptachlor	6 ¹		
Methoxychlor	300 ¹		
Toxaphene	20 ¹		
PCB (Total)	11		
Total PAHs	300 ¹		
Benzo(a)pyrene TEQ ³	3 ¹		
PETROLEUM HYDROCARBONS			
TRH C6 – C9	<20 ⁴ / 65 ⁵		
TRH C110 - C14	<20 ⁴		
TRH C15 – C28	<50 ⁴		
TRH C29 – C36	<50 ⁴		
TRH C10 – C36 (Total)	<50 ⁴ /1,000 ⁵		
Benzene	<0.14/15		

Table 4 (Continued): Adopted Site Assessment Criteria

PETROLEUM HYDROCARBONS		
Toluene	<0.1 ⁴ /130 ⁵	ac.
Ethylbenzene	<0.14/505	4
Xylenes	<0.34/255	441
Napthalene	<0.5 ⁴ / 170 ⁵	44)

¹ NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM). Adapted from Table 1(A)1.

2a Conservatively based solely on soil specific added contaminant limit (ACL) for the aged metal – lowest value in table for urban residential/public open space (where relevant)

¹⁸ Based on Cr (VI)

² NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM). Adapted from Tables 1B(1) to (5) – Generic EILs

³ HIL is based on the 8 carcinogenic PAH's and their TEF's potency relative to B(a)P adopted by CCME (2008). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF and summing the product.

⁴ Limit of Reporting (LOR) conservatively set as initial screening criteria

⁵ Threshold concentrations adopted from NSW EPA (1994) Guidelines for Assessing Service Station Sites; Table 3 – Threshold Concentrations for sensitive land use - soils

9 FIELDWORK AND LABORATORY ANALYSIS

Five test pits were excavated on the 5 July 2013 in the full time presence of an environmental scientist as part of a concurrent geotechnical assessment. Visual and olfactory observations were recorded for each of the five test pits (TP1 – 5) with two representative samples collected from each test pit for chemical analysis. The test pit locations were located using a GPS with locations shown in Figure 1. Copies of the logs of the test pit locations are included in Appendix H.

9.1 Soil Sampling

During test pitting, soil samples were collected either directly from the walls of the test pit or from soils from the centre of the excavator bucket, which had not come into contact with the bucket.

Soil samples were collected with a new pair of nitrile gloves.

Soil samples were generally collected within the fill materials at the surface, where there was visual or olfactory evidence of contamination (if any) or at major changes in stratigraphy. The soil was placed into clean 250mL glass jars, which were sealed with Teflon lined caps, labelled and placed directly into ice-cooled chests for transport to the laboratory.

Headspace screening tests were carried out using a Mini Rae 2000 photoionisation detector (PID) fitted with a 10.6eV lamp and calibrated with isobutylene gas at a concentration of 100ppm. This instrument allows rapid, semi quantitative analysis of ionisable volatile organic compounds in the soil.

9.2 Laboratory Schedule

Table 5 identifies the analysis schedule executed for this assessment.

Table 5: Laboratory Analysis Schedule

Test Pit	Sample ID	Depth (m bgs)	Analysis
TP1	TP1-1	0.2 - 0.3	Metals/TRH/BTEX/PAH/OCP/OPP/Asbestos
	TP1-2	0.4 - 0.5	Sample not analysed
TP2	TP2-1	0.2 - 0.3	Metals/Asbestos
	TP2-2	0.4 - 0.5	Sample not analysed
TP3	TP3-1	0.2 - 0.3	Metals/TRH/BTEX/PAH/OCP/OPP/Asbestos
	TP3-2	0.4 - 0.5	Metals/TRH/BTEX/PAH/OCP/OPP/Asbestos

Table 5 (Continued): Laboratory Analysis Schedule

Test Pit	Sample ID	Depth (m bgs)	Analysis
TP4	TP4-1	0.2 - 0.3	Metals/Asbestos
	TP4-2	0.4 - 0.5	Sample not analysed
TP5	TP5-1	0.2 - 0.3	Metals/TRH/BTEX/PAH/OCP/OPP/Asbestos
	TP5-2	0.4 - 0.5	Sample not analysed

Notes:

TRH = Total Recoverable Hydrocarbons BTEX = Benzene, Toluene, Ethylbenzene, Xylene PAH =
Polycyclic Aromatic Hydrocarbons Metals = arsenic, cadmium, chromium, copper, lead, nickel, mercury, zinc
OCP = Organochlorine Pesticides OPP = Organophosphorus Pesticides

The primary laboratory was Eurofins MGT with all primary and duplicate metals, hydrocarbons and pesticide samples analysed by this laboratory.

The secondary laboratory was Envirolab with triplicate samples for metals, hydrocarbons and pesticide analysed by this laboratory.

Asbestos identification was subcontracted by Eurofins MGT to Liability & Risk Management Consulting with all asbestos identification conducted by LRM.

All laboratories were NATA accredited for the tests performed.

9.2.1 Quality Assurance/Quality Control (QA/QC)

Field work was conducted by a Coffey Environmental Scientist in general accordance with Coffey Standard Operating Procedures. The QA/QC results are discussed in Section 10.3.1.

10 RESULTS

10.1 Generalised Subsurface Conditions

The generalised subsurface conditions encountered across the site are summarised below:

FILL

Clayey SAND. Fine to coarse grained, black medium plasticity clay. Topsoil's

typically extended to 0.3 m bgs.

RESIDUAL / EXTREMELY CLAY/Clayey SAND/Sandy CLAY. Clays were typically medium to high plasticity,

red-brown to grey-brown. Sands were fine to medium grained

WEATHERED ROCK

No unusual odours were noted during sampling. No visual evidence of ACM was noted during excavations. No groundwater inflows were observed.

10.2 Headspace Screening Results

PID results are included on the test pit logs (Appendix G). Soil samples screened recorded negligible readings (0.0ppm). This is generally consistent with field observations and the laboratory tested soil samples. This indicates that significant volatile ionisable contamination was not apparent in the soil samples screened.

10.3 Laboratory Analysis Results

10.3.1 Quality Assurance/Quality Control

Coffey assessed the laboratory data against predetermined Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs) (completeness, comparability, representativeness, precision, and accuracy) for both field and laboratory procedures and results. A copy of the quality control analysis results is presented in Appendix I.

Based on our assessment, the following comments can be made regarding soil samples.

- A duplicate soil sample was inadvertently not analysed for this batch of samples. The laboratory
 precision can therefore not be directly assessed. Laboratory duplicates were carried out by the
 laboratory and these were within acceptable control limits. This is not considered significant.
- A wash blank sample was not collected as samples were collected from soils not touching the
 excavator bucket. The potential for cross-contamination between sampling locations is considered
 negligible.

Samples analysed for volatile contaminants (such as BTEX compounds) were accompanied by a trip spike and trip blank sample. Analysis of these QA samples indicated that volatile losses and cross contamination were unlikely to have occurred.

The QA/QC results indicate that the laboratory data is useable and adequately represents concentrations of contaminants at the sampling locations.

10.3.2 Comparison of Results to Adopted Site Assessment Criteria

The laboratory results are presented in Table LR1. No sample was found to contain COPC in excess of the adopted site assessment criteria. No BTEX, TPH, PAH, PCB, OCP or OPP was recorded above the Limits of Reporting (LOR). Concentrations of metals were below the adopted site assessment criteria in all samples.

No asbestos was detected in samples submitted for asbestos analysis.

11 CONCLUSIONS AND RECOMMENDATIONS

Coffey undertook a desktop study, site walkover and soil sampling, to assess, at a preliminary level, the potential for soil contamination to be present at the Site. The results of the brief site history study generally indicated that the site was unlikely to have been subject to contaminating activities associated with the historical activities conducted on and nearby the Site. A data gap was noted where aerial imaging was not available prior to 1975 but the site appears to not have been developed.

Coffey excavated five test pits to a maximum depth of 1.3m bgs across the Site. No visual, olfactory or screening indications were observed during the soil investigations. All soil samples analysed indicated that concentrations of the contaminants of potential concern tested were below the adopted site assessment criteria for residential land use.

As a result of the investigations conducted during this preliminary assessment, the likelihood of contamination to be present on Site is considered to be low. Further assessment could be carried out to increase the level of confidence in the potential presence of contamination; otherwise an unexpected finds procedure may be able to be adopted for the site during redevelopment to manage contamination should it be identified.

12 LIMITATIONS

The findings contained in this report are the result of discrete/specific methodologies used in accordance with normal practices and standards. To the best of our knowledge, they represent a reasonable interpretation of the general condition of the parts of the site assessed at the time the investigations were carried out.

Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points. This report does not provide geotechnical information or information of hazardous building materials within buildings or buried services/structures.

13 REFERENCES

Coffey (2013), Geotechnical Investigation, Due diligence Assessment, Block B, Section 28, Rivett , ACT

Australian Capital Territory Environment Protection Authority (2009) Contaminated Sites Environment Protection Policy, November 2009. Australian Capital Territory, Canberra.

Russel, E.A. (1980) Geology Map of Canberra, Queanbeyan and Environs. 1:50,000 scale map. Bureau of Mineral Resources, Geology and Geophysics, Canberra.

Evans, R. (1984) Hydrogeology of Australian Capital Territory and Environs 1:100,000 scale map. Bureau of Mineral Resources, Geology and Geophysics, Canberra.

Jenkins, J.R. (2000). Soil Landscapes of the Canberra 1:100 000 Sheet. Department of Land and Water Conversation, Queanbeyan.

National Environment Protection Council (2013). National Environment Protection (Assessment of site Contamination) Measure; Schedule B(1) – Guideline on Investigation Levels for Soil and Groundwater. NEPC, Australia

New South Wales EPA (1994). Guidelines for Assessing Service Station Site. NSW EPA, Chatswood, NSW, Aust.

New South Wales Office of Environment and Heritage (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (2nd edition). NSW OEH, Sydney.

1

Important information about Coffey Environmental Report

Uncertainties as to what lies below the ground on potentially contaminated sites can lead to remediation costs blow outs, reduction in the value of the land and to delays in the redevelopment of land. These uncertainties are an inherent part of dealing with land contamination. The following notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report has been written for a specific purpose

Your report has been developed on the basis of a specific purpose as understood by Coffey and applies only to the site or area investigated. For example, the purpose of your report may be:

- To assess the environmental effects of an ongoing operation.
- To provide due diligence on behalf of a property vendor.
- To provide due diligence on behalf of a property purchaser.
- To provide information related to redevelopment of the site due to a proposed change in use, for example, industrial use to a residential use.
- To assess the existing baseline environmental, and sometimes geological and hydrological conditions or constraints of a site prior to an activity which may alter the sites environmental, geological or hydrological condition.

For each purpose, a specific approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible, quantify risks that both recognised and unrecognised contamination pose to the proposed activity. Such risks may be both financial (for example, clean up costs or limitations to the site use) and physical (for example, potential health risks to users of the site or the general public).

Scope of Investigations

The work was conducted, and the report has been prepared, in response to specific instructions from the client to whom this report is addressed, within practical time and budgetary constraints, and in reliance on certain data and information made available to Coffey. The analyses, evaluations, opinions and conclusions presented in this report are based on those instructions, requirements, data or information, and they could change if such instructions etc. are in fact inaccurate or incomplete.

Subsurface conditions can change Interpretation of factual data

Subsurface conditions are created by natural processes and the activity of man and may change with time. For example, groundwater levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of the subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project and/or on the property.

Interpretation of factual data

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from indirect field measurements and sometimes other reports on the site are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how well qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, parties involved with acquisition, management redevelopment should retain the services of Coffey through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has therefore commenced and your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered with redevelopment or on-going use of the site. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. In particular, a due diligence report for a property vendor may not be suitable for satisfying the needs of a purchaser. Your report should not be applied for any purpose other than that originally specified at the time the report was issued.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other professionals who are affected by the report. Have Coffey explain the report implications to professionals affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), field testing and laboratory evaluation of field samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

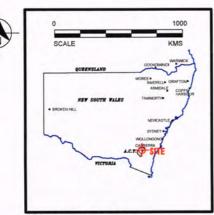
Contact Coffey for additional assistance

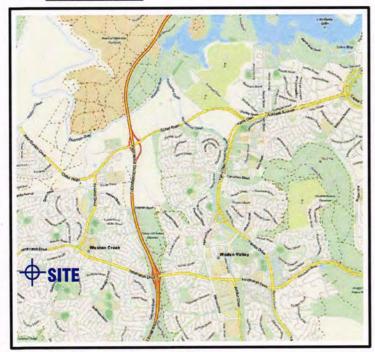
Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to land development and land use. It is common that not all approaches will be necessarily dealt with in your environmental site assessment report due to concepts proposed at that time. As a project progresses through planning and design toward construction and/or maintenance, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Environmental reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise individual responsibilities. Read documents from Coffey closely and do not hesitate to ask any questions you may have.

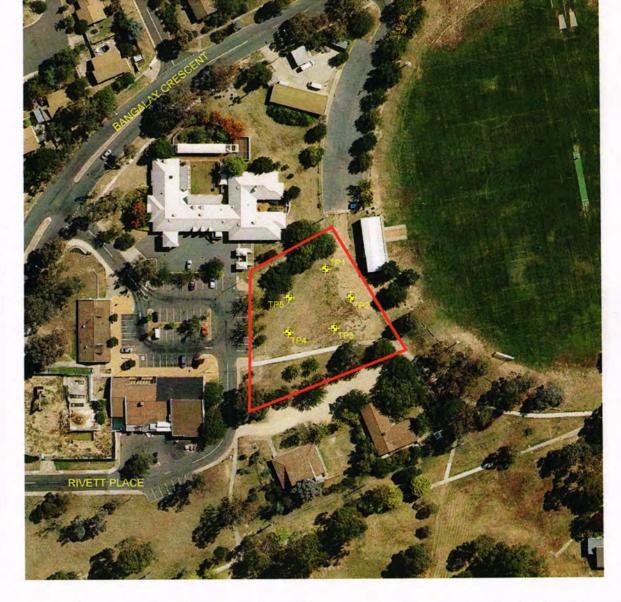
Tables


Preliminary Contamination Assessment, Block 13 Section 28, Rivett, ACT


0	E						Sample ID Date	TP1-1 5/07/2013	5/07/2013	TP3-1 5/07/2013	TP3-2 5/07/2013	TP4-1 5/07/2013	TP5-1 5/07/2013
Chem_Group	ChemName	Units	EQL	NEPM 2013 HIL A	NEPM 2013 EIL	NSW EPA 1994	ACT EPA			0.0112010	0.00.00.0	GOTTADIO	GONZOIS
sbestos	Asbestos					distribution and	No Asbestos	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detect
RH	TRH C6-C9	mg/kg	20	<20 4/ 65 5			The second of the second of	<20	-	<20	<20	THOS DESIGNATION	<20
	TRH C10-C14	mg/kg	20	<20 4		Accessed to the second	The state of the s	<20		<20	<20	-	<20
	TRH C15-C28	mg/kg	50	<50 ⁴				<50	-	<50	<50	- 11	
	TRH C29-C36	mg/kg	100	<50 ⁴				<50	-			ang-	<50
	TRH C10-C36 (Total)	mg/kg	100						-	<50	<50	Tax:	<50
TEX				<50 ⁴ /1000 ⁵				<50	111	<50	<50	700	<50
I EX	Benzene	mg/kg	0.1			STATE A CALLED		<0.1	+-	< 0.1	<0.1		< 0.1
	Toluene	mg/kg	0.1			130		<0.1		< 0.1	<0.1		<0.1
	Ethylbenzene	mg/kg	0.1			50		<0.1		<0.1	<0.1		< 0.1
	Xylene (m & p)	mg/kg	0.2	20000				<0.2		<0.2	0.4		<0.2
	Xylene (o)	mg/kg	0.1					<0.1		<0.1	0.2		<0.1
	Xylene Total	mg/kg	0.3			25	But were to the beautiful at	< 0.3		<0.3	0.6	-	<0.3
	Naphthalene	mg/kg	0.5		170 ^{2a}	CONTRACTOR OF THE PARTY OF THE	The state of the state of the state of	< 0.5		<0.5	<0.5	- "	<0.5
rorganics	Moisture Content (dried @ 103℃)	26	0.1					10	11	12	12	40	
tetals	Arsenic	mg/kg	2	100 '	100 ^{2s}			4	3.6			12	13
	Cadmium	mg/kg	0.4		100					3.7	<2	<2	<2
	Chromium			20 '	-		U commence of the second	<0.4	<0.4	<0.4	<0.4	<0.4	< 0.4
		mg/kg	5	100	190 24	THE RESERVE TO	All the second s	12	11	17	12	9.7	10
	Copper	ring/kg	5	6000 '		Burgal Santa Co.	When the second	<5	<5	<5	<5	<5	<5
	Lead	mg/kg	5	300 '	1100 ^{2s}	The same of	Contraction of the Contraction o	10	11	12	8.3	7,7	7.9
	Mercury	mg/kg	0.1	40 '	1100			<0.1	<0.1	<0.1	<0.1		
	Nickel	mg/kg	5									<0.1	<0.1
	Zinc			400	30 ^{2a}	The second secon		<5	< 5	<5	<5	<5	6.2
CP		mg/kg	5	7400 1	70 ^{2a}			7.8	11	9.5	11	14	- 22
CP	4,4-DDE	mg/kg	0.05	240 1			A STATE OF THE PARTY OF THE PARTY.	< 0.05	- 1	< 0.05	<0.05		< 0.05
	a-BHC	mg/kg	0.05					<0.05		<0.05	≤0.05	-	
	Aldrin	mg/kg	0.05	6 '	1000	-		<0.05	-			- 20	< 0.05
	b-BHC	mg/kg	0.05						-	< 0.05	<0.05		< 0.05
	Chlordane		0.05		-			<0.06	-	< 0.05	< 0.05		< 0.05
		mg/kg		50 1		And the second		< 0.1		<0.1	<0.1		< 0.1
	d-BHC	mg/kg	0.05			Marie Salaton Marie		< 0.05	-	< 0.05	< 0.05		< 0.05
	DDD	mg/kg	0.05	240				< 0.05	-	< 0.05	<0.05		<0.05
	DOT	mg/kg	0.05	240 1	180 ^{2a}			<0.05		<0.05	<0.05	-	<0.05
	Dieldrin	mg/kg	0.05	6'	100			<0.05	11				
	Endosulfan I	mg/kg	0.05	6.					100	< 0.05	< 0.05		< 0.05
	Endosufan II		0.05		_			< 0.05		< 0.05	< 0.05	344	< 0.05
		mg/kg						< 0.05	143	< 0.05	< 0.05		< 0.05
	Endosulfan sulphate	mg/kg	0.05					< 0.05		< 0.05	< 0.05		< 0.05
	Endrin	mg/kg	0.05					< 0.05		< 0.05	< 0.05		<0.05
	Endrin aldehyde	mg/kg	0.05					<0.05		< 0.05	< 0.05		<0.05
	Endrin ketone	mg/kg	0.05			The second second		< 0.05		<0.05	<0.05		<0.05
	g-BHC (Lindans)	mg/kg	0.05			NAMES OF TAXABLE	The same of the sa	<0.05		<0.05		- 36	
	Heptachlor	mg/kg	0.05	6'		Control of the Control		<0.05			< 0.05	-	< 0.05
	Heptachlor epoxide	mg/kg	0.05						-77	< 0.05	< 0.05	- he	< 0.05
	Hexachlorobenzene							<0.05	- 41	< 0.05	< 0.05		< 0.05
		mg/kg	0.05					< 0.05		< 0.05	< 0.05	14.	< 0.05
	Methoxychlor	mg/kg	0.05					< 0.05		< 0.05	< 0.05		< 0.05
	Toxaphene	mg/kg	0.1					<0.1		<0.1	< 0.1		< 0.1
	Dibutylchlorendate (surr.)	%	f					93	116	.113	98	7	99
	Tetrachloro-m-xylene (surr.)	%	1		/			108		143	124		126
PP	Bolstar (Sulprofos)	mg/kg	0.2					<0.2		<0.2	<0.2	- "	<0.2
	Chlorpyrifos	mg/kg	0.2			Service and		<0.2		<0.2	<0.2		<0.2
	Demeton-O	mg/kg	0.2			A STATE OF THE PARTY OF THE PAR		<0.2					
	Diazinon	mg/kg	0.2			CONTRACTOR OF THE		<0.2	- 11	<0.2	<0.2		< 0.2
	Dichloryos	mg/kg	0.2			STATE OF THE PARTY	NA PROPERTY.		344	<0.2	<0.2		< 0.2
	Disuffoton		0.2	-				<0.2		< 0.2	< 0.2		<0.2
	Ethion	mg/kg			-			< 0.2	The Control of the Co	< 0.2	<0.2		< 0.2
		mg/kg	0.2					< 0.2		<0.2	<0.2	- 77	< 0.2
	Ethoprop	mg/kg	0.2					< 0.2		<0.2	<0.2		<0.2
	Fenitrothion	mg/kg	0.2			PARTY CONTRACTOR		< 0.2		<0.2	<0.2		<0.2
	Fensulfothion	mg/kg	0.2			Additional Confession	American Committee of the Committee of	<0.2		<0.2	<0.2		<0.2
	Fenthion	mg/kg	0.2					<0.2		<0.2	<0.2		<0.2
	Merphos	mg/kg	0.2					<0.2		<0.2	<0.2		<0.2
	Methyl parathion	mg/kg	0.2			STATE OF THE PARTY		<0.2		<0.2	<0.2	-	<0.2
	Mevinphos (Phosdrin)	mg/kg	0.2			C. S.	Property and the second	<0.2		<0.2			
	Naled (Dibrom)	mg/kg	0.5		1000				- "		<0.2		<0.2
	Phorate	mg/kg	0.2				property and the property of the second	<0.5		<0.5	<0.5		<0.5
	Romei		0.2					<0.2		< 0.2	<0.2		< 0.2
	Trichloronate	mg/kg				-		<0.2		< 0.2	<0.2	- 46	<0.2
		mg/kg	0.2			100000		<0.2	-	< 0.2	< 0.2		<0.2
	Tokuthion	mg/kg	0.2		475	(100)		< 0.2	10	< 0.2	< 0.2		<0.2
	Triphenylphosphate (surr.)	%	1				M. C.	102		95	86		103
Н	Acenaphthene	mg/kg	0.5	Decree on the				<0.5		<0.5	<0.5	-	<0.5
	Acenaphthylene	mg/kg	0.5					<0.5		<0.5	<0.5		€0.5
	Anthracene	mg/kg	0.5			The second		<0.5	16	<0.5	<0.5	-	
	Benzo(a)anthracene	mg/kg	0.5			The state of the s							<0.5
	Benzo(a)pyrene	mg/kg	0.5			Name of Street		<0.5	- 10	<0.5	<0.5	- 4	<0.5
	Benzo(b)fluoranthene	mg/kg	0.5			Control of the Contro		<0.5		<0.5	<0.5		<0.5
	Benzo(g,h,i)perylene	marke				The second second	A STATE OF THE PARTY OF THE PAR	<0.5		<0.5	< 0.5	in .	< 0.5
	Berrolk Wassethern	mg/kg	0.5					< 0.5	C	< 0.5	<0.5	-	< 0.5
	Benzo(k)fluoranthene	mg/kg	0.5					< 0.5	Tr.	< 0.5	<0.5	- 10	< 0.5
	Chrysene	mg/kg	0.5					<0.5		<0.5	<0.5		<0.5
	Dibenz(a,h)anthracene	mg/kg	0.5			100 St	Andrew Control	<0.5		<0.5	<0.5		<0.5
	Fluoranthene	mg/kg	0.5			Color State Color	E0005	<0.5	"	<0.5	<0.5		
	Fluorene	mg/kg	0.5	W-5000000000000000000000000000000000000				<0.5					<0.5
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5						100	< 0.5	< 0.5		< 0.5
	The property of the second	mg/kg	0.5					<0.5		< 0.5	< 0.5		<0.5
						The second secon		< 0.5		< 0.5	< 0.5		< 0.5
	Phenanthrene												
	Pyrene	mg/kg	0.5					<0.5					
				300 1				<0.5 <0.5		<0.5 <0.5	<0.5 <0.5	н.	<0.5

Figures

Preliminary Contamination Assessment, Block 13 Section 28, Rivett, ACT


GENERAL AREA MAP

REGIONAL AREA MAP

© OpenStreetMap contributors, CC-BY-SA

LEGEND

TEST PIT LOCATIONS

C	of	16 Middura Street Fyshwick ACT 2609 Ph: (02) 6260 7288 Fax: (02) 6260 7211		LAND D	EVELOF	PMENT A	GENCY	Project: GEOTECHNICAL & PRELIMINARY CONTAMINATION ASSESSMENT	SITE LOCALITY & INVESTIGATION LOCATIONS		
			0	10	20	30	40 50	Location: BLOCK 13 SECTION 28 RIVETT PLACE	Drawn LZ	Date 16.07.13	
	%.07.13 Date	Revision Details	SCA	SCALE 1:1000 (A3) METRES		RIVETT, ACT	Project - Drawing No. GEOTFYSH09656AA-D01	Figure No. Rev.			

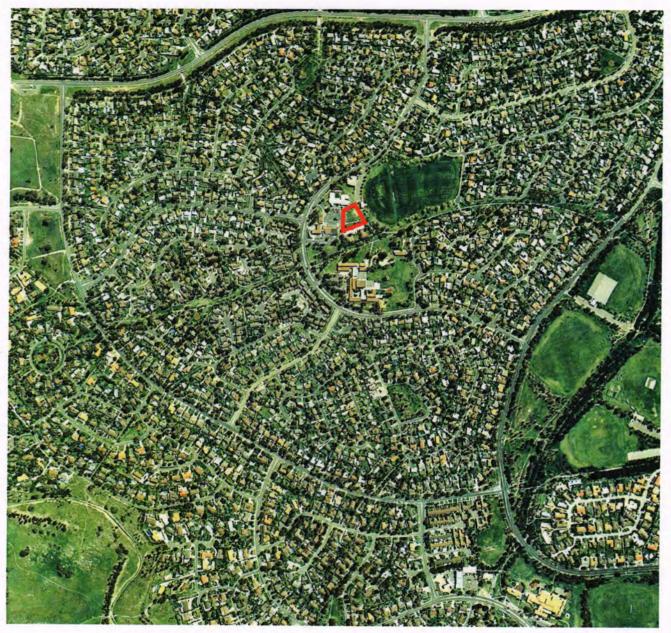
Appendix A Historical Aerial Photographs

Preliminary Contamination Assessment, Block 13 Section 28, Rivett, ACT

drawn	LZ	
date	16.07.13	
scale	1:10,000	
original size	A4	

client:	LAND DEVELOPMENT AGENCY
project:	GEOTECHNICAL & PRELIMINARY CONTAMINATION ASSESSMENT
	BLOCK 13 SECTION 28, RIVETT PLACE, RIVETT, ACT

title: AERIAL PHOTO - APRIL 1975 job no: GEOTFYSH09656AA



drawn	LZ
date	16.07.13
scale	1:10,000
original size	A4

client:	LAND DEVELOPMENT AGENCY		
project:	CE: GEOTECHNICAL & PRELIMINARY CONTAMINATION ASSESSMENT BLOCK 13 SECTION 28, RIVETT PLACE, RIVETT, ACT		
title:	AERIAL PHOTO - MARCH 1985	job no: GEOTFYSH09656AA	

drawn	LZ	
date	16.07.13	
scale	1:10,000	
original size	A4	

client:	LAND DEVELOPMENT AGENCY	
project:	GEOTECHNICAL & PRELIMINARY CONT BLOCK 13 SECTION 28, RIVETT F	
title:	AERIAL PHOTO - OCTOBER 1995	job no: GEOTFYSH09656AA

original size	A4	
scale	1:10,000	
date	16.07.13	
drawn	LZ	

client:	LAND DEVELOPMENT AGENCY		
project:	GEOTECHNICAL & PRELIMINARY CONTAMINATION ASSESSMENT BLOCK 13 SECTION 28, RIVETT PLACE, RIVETT, ACT		
title:	AERIAL PHOTO - MAY 2004	job no: GEOTFYSH09656AA	

Appendix B Territory Plan 2012 – Community Facility (CF) Zone

CFZ - Community Facility Zone

Zone Objectives

- To facilitate social sustainability and inclusion through providing accessible sites for key government and non-government facilities and services for individuals, families, and communities.
- To provide accessible sites for civic life and allow community organisations to meet the needs of the Territory's various forms of community.
 - c) To protect these social and community uses from competition from other uses.
 - d) To enable the efficient use of land through facilitating the co-location, and multi-use of community facilities, generally near public transport routes and convenience services appropriate to the use.
- To encourage adaptable and affordable housing for persons in need of residential support or care.
- f) To safeguard the amenity of surrounding residential areas against unacceptable adverse impacts including from traffic, parking, noise or loss of privacy.

CFZ - Community Facility Zone Development Table

EXEMPT DEVELOPMENT

Development approval is not required. Building approval may be required. On leased land, development must be authorised by a lease.

Development identified in the Planning and Development Act 2007 as exempt (see sections 133 and 134 of the Act and section 20 and schedule 1 of the Planning and Development Regulation 2008)

ASSESSABLE DEVELOPMENT

Development application required.

On leased land, development must be authorised by a lease.

MINIMUM ASSESSMENT TRACK

CODE

Development listed below requires a development application and is assessed in the code track

Development

No development identified

MINIMUM ASSESSMENT TRACK

MERIT

Development listed below requires a development application and is assessed in the merit track, unless specified in schedule 4 of the Planning and Development Act 2007 (as impact track) or specified as prohibited development in a precinct map.

Deve	lopment
ancillary use	minor use
business agency	office
child care centre	outdoor recreation facility
community activity centre	parkland
community theatre	place of worship
consolidation	public agency
cultural facility	religious associated use
demolition	residential care accommodation
development in a location and of a type indentified in a precinct map as additional merit track development	retirement village
educational establishment	sign
emergency services facility	subdivision
health facility	supportive housing
hospital	temporary use
indoor recreation facility	varying a lease (where not code track or impact track assessable)
minor road	

MINIMUM ASSESSMENT TRACK IMPACT

Development listed below requires a development application and is assessed in the impact track

- 1. Development that is not:
 - a. Exempt code track or merit track development; or
 - Prohibited development other than development that is permitted under s137 of the Planning and Development Act 2007.
- Development specified in schedule 4 of the Planning and Development Act 2007 and not listed as a prohibited use in this table.
- 3. Development that is authorised by a lease and listed as a prohibited use in this table.
- Development declared under section 124 or section 125 of the Planning and Development Act 2007 and not listed as a prohibited development in this table.
- 5. Varying a lease to add a use assessable under the impact track.

	DEVELOPMENT
	ent unless the development is identified elsewhere
this development table as assessable under the	
agriculture	MAJOR UTILITY INSTALLATION
airport	mining industry
animal care facility	mobile home park
animal husbandry	multi-unit housing
aquatic recreation facility	municipal depot
boarding house	nature conservation area
bulk landscape supplies	offensive industry
car park	overnight camping area
caretakers residence	pedestrian plaza
caravan park/camping ground	place of assembly
cemetery	plant and equipment hire establishment
civic administration	plantation forestry
club	playing field
communications facility	produce market
COMMERCIAL ACCOMMODATION USE	public transport facility
corrections facility	railway use
craft workshop	recyclable materials collection
defence installation	recycling facility
development in a location and of a type identified in a precinct map as additional prohibited development	
drink establishment	restaurant
drive-in cinema	sand and gravel extraction
farm tourism	scientific research establishment
financial establishment	serviced apartment
freight transport facility	service apartment
funeral parlour	SHOP
general industry	single dwelling housing
group or organised camp	special dwelling
habitable suite	stock/sale yard
hazardous industry	store
hazardous waste facility	tourist facility
home business	transport depot
ncineration facility	varying a lease to add a use listed as "prohibited development" in this development table
ndoor entertainment facility	vehicle sales
ndustrial trades	veterinary hospital
and fill site	warehouse
and management facility	waste transfer station
ight industry	woodlot
iquid fuel depot	zoological facility
najor road	

NI2008-27

Development proposals must comply with the Community Facility Zone Development Code.

NOTE ABOUT ANCILLARY, MINOR AND TEMPORARY USE

Some development that would otherwise be prohibited may be assessed under the merit track if they can be defined as ancillary, minor or temporary use. For example, a car park alone is prohibited, but could be considered if it is ancillary to a child care centre which is an assessable development under the merit track.

Appendix C ACT EPA Record Search

File Ref: 97/5030

Coffey Environments Pty Ltd 16 Mildura Street Fyshwick ACT 2609

RE: CONTAMINATED LAND SEARCH

Dear

Thank you for your search form request of 24/06/2013 enquiring about:

Block 2 Section 517 Gordon Tuggeranong

Records held by the Environment Protection Authority (EPA) for the above block(s) indicate the following:

The block is not recorded on the EPA's contaminated sites management database or geographic information system.

The EPA has not issued any environment protection orders under sections 91C (1), 91D (1) or 125 (4) of the *Environment Protection Act 1997* (the Act) over the site and as a result the site is not recorded on the Register of contaminated sites under section 21(A) of the Act.

At present the EPA has no information on contamination of the above block(s). However, this does not absolutely rule out the possibility of contamination and should not be interpreted as a warranty that there is no contamination.

I appreciate that this does not absolutely rule out the existence of contamination of the soils. If you or your clients wish to be completely sure, you, or they, should arrange to conduct independent tests.

Yours sincerely
Mark Hockenly

Mark Heckenberg Project Officer

Environment Protection and Water Regulation

24/06/2013

TAX INVOICE

Date:

24/06/2013

Receipt

317512657044

Number:

To: Ms Teagan Ashworth Coffey Environments Pty Ltd 16 Mildura Street Fyshwick ACT 2609

Quantity	Description of Supply	Price	Total
	Contaminated Land Search		
1	Block 2, Section 517, Gordon, Tuggeranong		
	* T		
		_	
		_	
	41		
	* * * * * * * * * * * * * * * * * * * *		
TOTAL AAA	CUNTRAID	_	
OTAL AM	OUNT PAID		

THE TOTAL PRICE INCLUDES GST

GPO Box 158 Canberra ACT 2601 | phone: 132281 | www.act.gov.au

ABN: 31432729493

File Ref: 97/5032

Ms Coffey Environments Pty Ltd 16 Mildura Street Fyshwick ACT 2609

RE: CONTAMINATED LAND SEARCH

Dear

Thank you for your search form request of 24/06/2013 enquiring about:

Block 13 Section 28 Rivett Weston Creek

Records held by the Environment Protection Authority (EPA) for the above block(s) indicate the following:

The block is not recorded on the EPA's contaminated sites management database or geographic information system.

The EPA has not issued any environment protection orders under sections 91C (1), 91D (1) or 125 (4) of the *Environment Protection Act 1997* (the Act) over the site and as a result the site is not recorded on the Register of contaminated sites under section 21(A) of the Act.

At present the EPA has no information on contamination of the above block(s). However, this does not absolutely rule out the possibility of contamination and should not be interpreted as a warranty that there is no contamination.

I appreciate that this does not absolutely rule out the existence of contamination of the soils. If you or your clients wish to be completely sure, you, or they, should arrange to conduct independent tests.

Yours sincerely

Mark Heckenberg Project Officer

Environment Protection and Water Regulation

Mark Hockerly

24/06/2013

TAX INVOICE

Date:

24/06/2013

Receipt

317512657044

Number:

To: Ms Teagan Ashworth Coffey Environments Pty Ltd 16 Mildura Street Fyshwick ACT 2609

Quantity	Description of Supply	Price	Total
	Contaminated Land Search		IT I SO
1	Block 13, Section 28, Rivett, Weston Creek		
	9		
TOTAL AM	OUNT PAID		

THE TOTAL PRICE INCLUDES GST

GPO Box 158 Canberra ACT 2601 | phone: 132281 | www.act.gov.au

ABN: 31432729493

Appendix D ORS Dangerous Goods Search

OFFICE OF REGULATORY SERVICES

DEPARTMENT OF JUSTICE & COMMUNITY SAFETY

28 June 2013

Coffey Environments Australia

16 Mildura Street

FYSHWICK ACT 2609

Attention: Teagan Ashworth

Thank you for the application for a records search for Block 2 Section 517 Gordon and Block 13 Section 28 Rivett, Canberra.

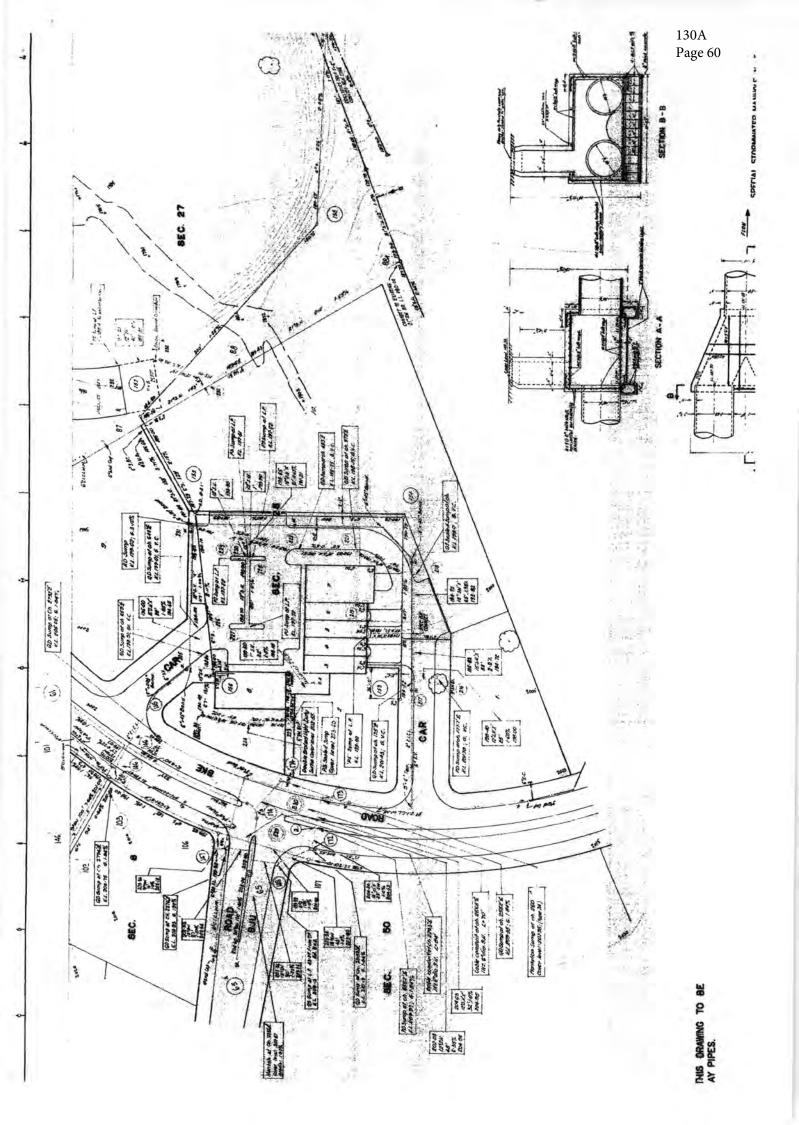
I have conducted a search of the Dangerous Goods Database and the Dangerous Substances Register and hold no records for the above site.

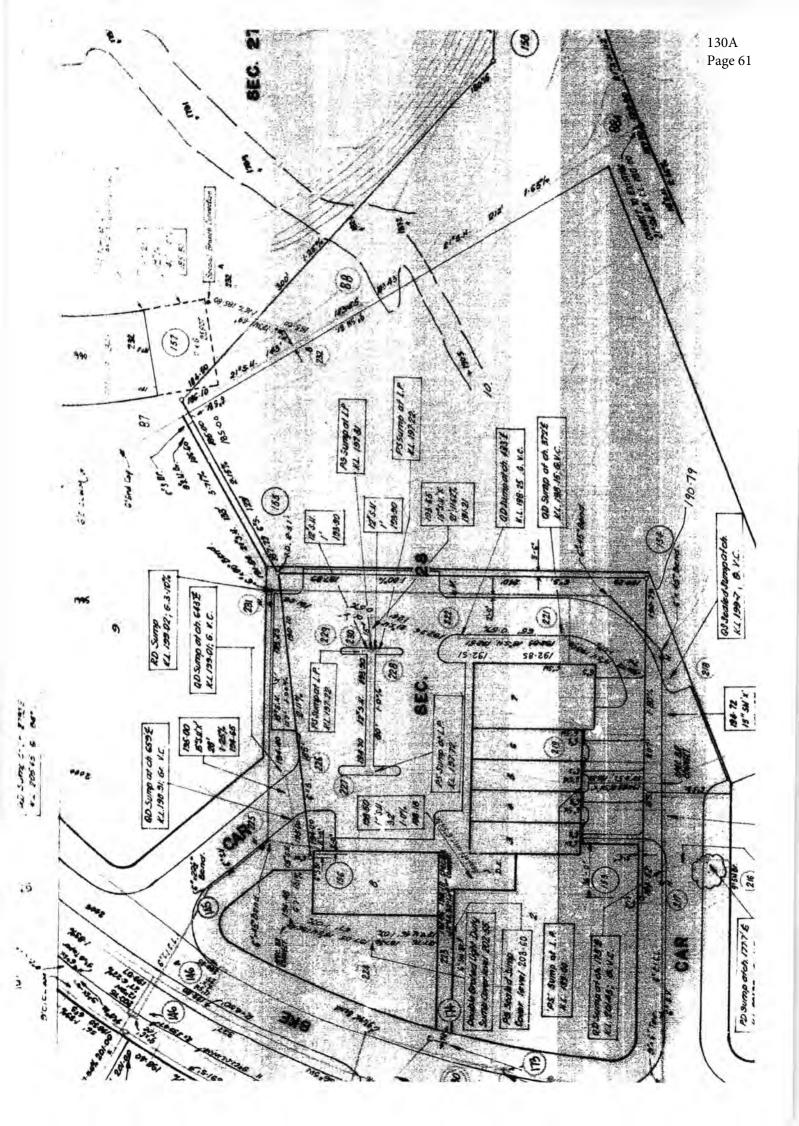
(Please note: Under the *Dangerous Goods Act 1975* (1975 to April 2004), tanks of 50,000 litres which contained Diesel were not required to be licenced with WorkCover, only if the capacity was 50,001 litres).

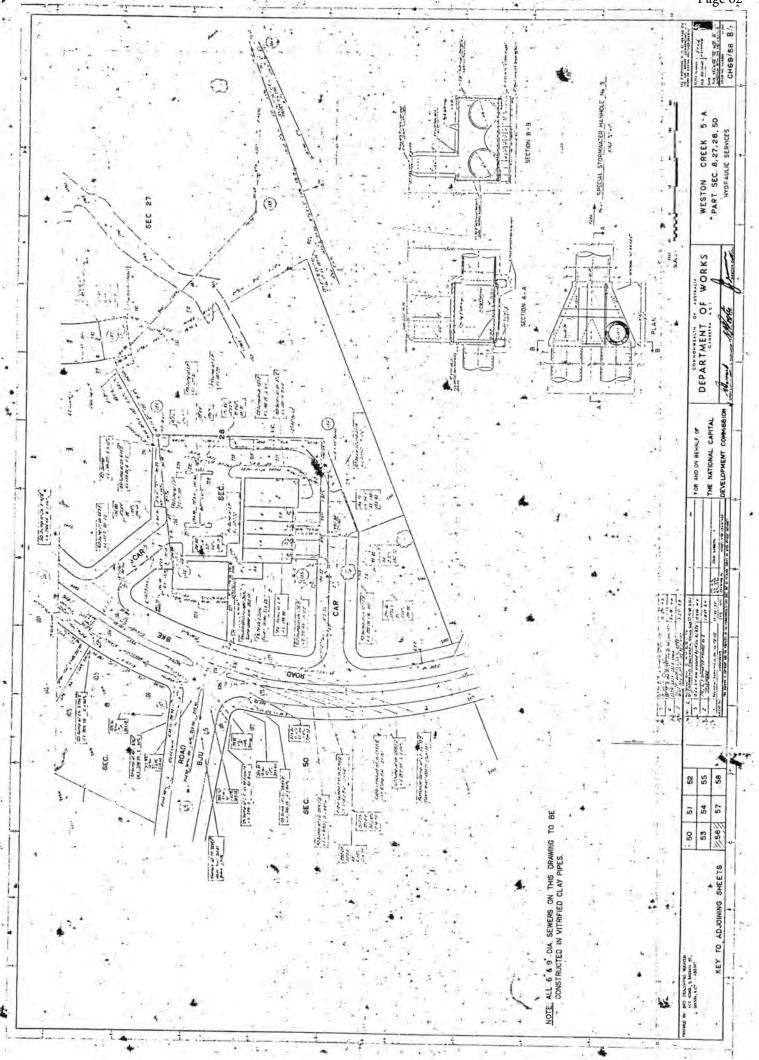
If you have any questions in relation to this matter please do not hesitate in contacting me on 62076353 or email lisa.curran@act.gov.au.

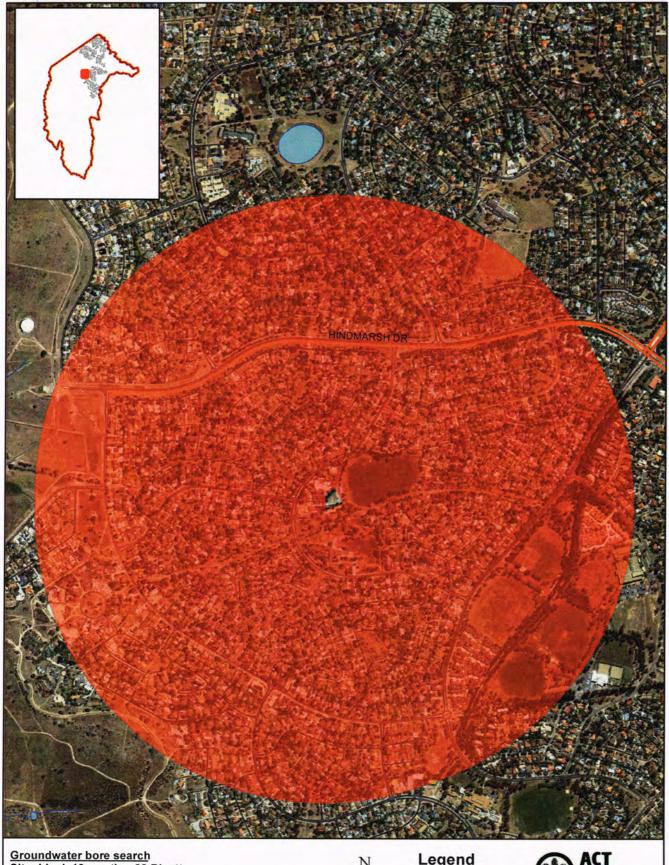
Regards

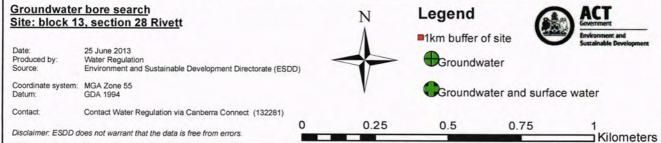
Lisa Curran


Administration Officer


Dangerous Substances Licencing


WorkSafe ACT


Appendix E Historical Documents



Appendix F ACT EPWRD Groundwater Bore Search

Coffey Email:

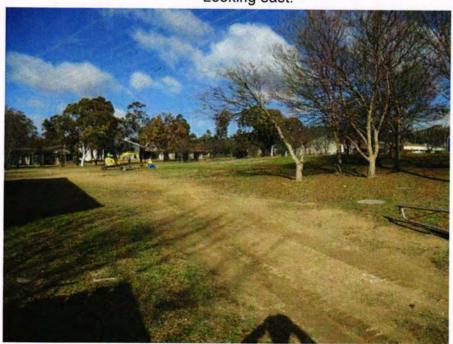
Dear

I refer to your application for a groundwater bore search. There are no privately managed groundwater abstraction bores registered under the *Water Resources Act* 2007 within a 1km radial search area of block 13, section 28, Rivett.

Please note that this search does not include investigation and/or monitoring bores associated with possible contaminated sites in the search area. If you require more information please contact Contaminated Sites (Environment Protection Authority) on 132281.

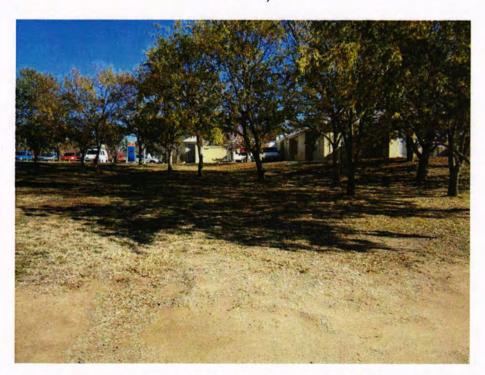
If you have any questions please contact me on (02) 6207 5606 or email <u>jillian.harrap@act.gov.au</u>.

Yours sincerely


Jillian Harrap Environment Protection Officer Water Regulation 25/06/2013

Appendix G Site Photographs

Photograph 1: Unsealed Car trafficking Area and rear of sporting field amenity block


- Looking east.

Photograph 2: Southern view of Site.

Photograph 3: South-eastern view of Site taken from NW corner (adjacent Rivett Place).

Photograph 4: Western view of tree line toward Respite Centre and Rivett Shops car parking area.

Appendix H Test Pit Logs

Excavation No.

TP01

Engineering Log - Excavation

Land Development Agency

Project No: Date started:

Sheet

GEOTFYSH09656AA

Client:

Date completed:

4.7.2013

Principal: Project:

Due Diligence Assessment: Block 13, Section 28, Rivett, ACT Logged by:

4.7.2013 SB

Test pit location:

Refer to Figure 1

Checked by:

CMC/ND

TP1-1 DS SANDSTONE, very low to low strength Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and minor components. Soil type: plasticity or particle characteristics, colour, secondary and s					5 Ton			 Pit Orientation: Easting:	689310				. Surface:
notes samples, tests, etc depth RL metres with RL m					0.7m	long 2	_		607333	3 m	_	dat	um: UTM 55H
TP1-1 DS FILL: Clayey SAND, fine ot coarse grained, brown, medium plasticity clay CI CLAY, medium plasticity, black with some white and grey sand, with some fine to coarse grained sand TP1-2 DS SANDSTONE, very low to low strength D H EXTREMELY TO HIGHLY WEATHERED ROCK Test pit TP01 terminated at 0.8m Test pit terminated on Very Sk progress		penetration		notes samples,		depth		material	oisture	onaition onsistency/	ensity index	kPa	structure and additional observations
Test pit TP01 terminated at 0.8m Test Pit terminated on Very Sk progress	1	23		TP1-2	RL		6	FILL: Clayey SAND, fine ot coarse grained, brown medium plasticity clay CLAY, medium plasticity, black with some white ar grey sand, with some fine to coarse grained sand	n, C	p VS	v/H	100	RESIDUAL PID = 0.0 PID = 0.0
						- 1. <u>0</u>		Test pit TP01 terminated at 0.8m					, Test Pit terminated on Very Sk

18.7.13

TESTPIT GEOTFYSH09656AA.GPJ COFFEY.GDT

method	
N	natural exposure
X	existing excavation
BH	backhoe bucket
В	bulldozer blade
R	ripper
E	excavator

avation

N nil

on date shown

water inflow

■ water outflow

U₅₀ U₆₃ undisturbed sample 50mm diameter undisturbed sample 63mm diameter DV disturbed sample vane shear (kPa) Bs bulk sample ER environmental sample refusal

classification symbols and soil description based on unified classification moisture D M moist

plastic limit

liquid limit

Wp

consistency/density index very soft S soft firm St stiff VSt very stiff H Fb friable very loose loose medium dense

very dense

D VD

Excavation No. TP02

Sheet

Project No: GEOTFYSH09656AA

Land Development Agency

Date started:

4.7.2013

Client: Principal:

Date completed:

4.7.2013

Project:

Due Diligence Assessment: Block 13, Section 28, Rivett, ACT Logged by:

SB

Test pit location:

Refer to Figure 1

Checked by:

CMC/ND

					5 Tor					9283 m		R.L	Surface:
	avation			rmation	0.7m	long 2	2.5m w	_		73338 m		dat	um: UTM 55H
exe		ion	inio	mation		_	mat		ubstance				
memod	benetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture	consistency/ density index	200 x pocket 300 a penetro-	structure and additional observations
1		N				-			FILL: Clayey SAND, fine to medium grained, pale black, medium plasticity clay	D	L		FILL
			Encountered	TP2-1		-	***	SW	SAND, fine to medium grained, pale grey, with some medium plasticity clay	М	MD		PID = 0.0 PID = 0.0
			None Enco			0. <u>5</u>		СН	Sandy CLAY, medium to high plasticity, red/brown/orange, fine to coarse grained sand	=Wp	VSt		RESIDUAL SOIL
			Z	DS		-							Tree root observed at 0.7m
2000000000								SC	Clayey SAND, fine to coarse grained, grey/brown, medium plasticity clay	D	VD		EXTREMELY WEATHERED ROCK
						1. <u>0</u>			Test pit TP02 terminated at 0.9m				Test Pit terminated on Very Slo progress
						1.5							

Sketch

method	
N	natural exposure
X	existing excavation
BH	backhoe bucket
В	bulldozer blade
R	ripper
E	excavator

support S shoring	9	N	nil
penetrati	on		
٣.,	ranging refusal		nce

U₅₀ U₆₃ D V

Bs E

es,	samples, tests
	undisturbed sample 50mm diameter
	undisturbed sample 63mm diameter
	disturbed sample
	vane shear (kPa)
	bulk sample
	environmental sample

soil	sification symbols and description d on unified classification em						
mois	ture						
D	dry						
M	moist						
W	wet						
Wp	plastic limit						

- 1	consiste	ncy/density index
П	VS	very soft
-1	S	soft
-1	F	firm
4	St	stiff
-1	VSt	very stiff
-1	H	hard
-1	Fb	friable
- 1	VL	very loose
-1	L	loose
-1	MD	medium dense
-1	D	dense
-	VD	very dense

TESTPIT GEOTFYSH09656AA.GPJ COFFEY.GDT 18.7.13

Land Development Agency

Excavation No. TP03

Sheet 1 of 1

Project No: GEOTFYSH09656AA

Date started:

4.7.2013

Principal:

Date completed:

4.7.2013

Project:

Client:

Due Diligence Assessment: Block 13, Section 28, Rivett, ACT Logged by:

SB

Test pit location:

Refer to Figure 1

Checked by:

CMC/ND

X	cavat	ion	info	rmation			mat	erial s	ubstance				
	v penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture	consistency/ density index	200 x pocket 300 a penetro- 400 meter	structure and additional observations
		N	ntered	TP3-1					FILL: Clayey SAND, fine to coarse grained, black, medium plasticity clay, with some foreign material	М	L		FILL
			None Encountered	TP3-2		0. <u>5</u>		CH	CLAY, high plasticity, red/brown, some fine grained sand Clayey SAND, fine to medium grained, grey/brown,	<wp< td=""><td>St</td><td></td><td>RESIDUAL SOIL PID = 0.0 EXTREMELY WEATHERED</td></wp<>	St		RESIDUAL SOIL PID = 0.0 EXTREMELY WEATHERED
000000000000000000000000000000000000000						-	/		medium plasticity clay				ROCK
						1. <u>0</u>			Test pit TP03 terminated at 0.8m				Tree root observed at 0.8m Test Pit terminated on Very Sk progress
						- 1,5							

Sketch

method	
N	natural exposure
X	existing excavation
BH	backhoe bucket
В	bulldozer blade
R	ripper
E	excavator

N nil
resistance ging to usal
el shown

water inflow✓ water outflow

notes,	samples, tests
Uso	undisturbed sample 50mm diameter
U ₆₃	undisturbed sample 63mm diameter
D	disturbed sample
V	vane shear (kPa)
Bs	bulk sample
E	environmental sample
R	refusal

	sification symbols and description	VS
base	d on unified classification	S
syste	em	F
		St
mois	ture	VSt
D	dry	н
M	moist	Fb
W	wet	VL
Wp	plastic limit	L

liquid limit

Ī	consister	ncy/density index
	VS	very soft
	S	soft
	F	firm
	St	stiff
	VSt	very stiff
	H	hard
	Fb	friable
	VL	very loose
	L	loose
	MD	medium dense
	_	

Excavation No.

TP04

Client:

Land Development Agency

Sheet 1 of 1 Project No:

GEOTFYSH09656AA

Date completed:

Date started:

4.7.2013 4.7.2013

Principal: Project:

Due Diligence Assessment: Block 13, Section 28, Rivett, ACT Logged by:

SB

Test pit location:

Refer to Figure 1

Checked by:

CMC/ND

				long 2	_	.5m wide Northing: 6073327 m da material substance				dati	tum: UTM 55H	
5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture	consistency/ density index	200 x pocket 300 d penetro- 400 meter	structure and additional observation
	N							FILL: Clayey SAND, fin eto coarse grained, brown, medium plasticity, with some foreign material	D	L		FILL
			TP4-1		_		CL	CLAY, low to medium plasticity, black, with some fine grained sand, gravel and charcoal	<wp< td=""><td>S</td><td></td><td>PID = 0.0</td></wp<>	S		PID = 0.0
		None Encountered	TP4-2		0. <u>5</u>		СН	Sandy CLAY, medium to high plasticity, red/brown, fine to medium grained sand	=Wp	St		RESIDUAL SOIL
		Non	Bs									
					1.0		SW	Gravelly SAND, fine to coarse grained, brown/orange/grey/red, fine to coarse grained, angular to subangular gravel	D/M	D		EXTREMELY WEATHERED ROCK PID = 0.0
						0 . 0		Test pit TP04 terminated at 1.3m				Test Pit terminated on Very S progress

Sketch

method	
N	natural exposure
X	existing excavation
ВН	backhoe bucket
В	bulldozer blade
R	ripper
E	excavator

support		
S shoring	N	nil
penetration		
1 2 3 4		
	esistano	e
refu	sal	
water		
	. 1	

water outflow

notes,	samples, tests
Uso	undisturbed sample 50mm diameter
U ₆₃	undisturbed sample 63mm diameter
D	disturbed sample
V	vane shear (kPa)
Bs	bulk sample
E	environmental sample
R	refusal

clas	sification symbols and	consiste	ncy/density index	
soil	description	VS	very soft	
base	ed on unified classification	S	soft	
syste	em	F	firm	
	100	St	stiff	
mois	sture	VSt	very stiff	
D	dry	H	hard	
M	moist	Fb	friable	
W	wet	VL	very loose	
Wp	plastic limit	L	loose	
WL	liquid limit	MD	medium dens	
		D	dense	
		VD	very dense	

TESTPIT GEOTFYSH09656AA.GPJ COFFEY.GDT 18.7.13

Excavation No.

TP05

Sheet

GEOTFYSH09656AA

Client:

Land Development Agency

Project No: Date started:

4.7.2013

Principal:

Date completed:

4.7.2013

Project:

Due Diligence Assessment: Block 13, Section 28, Rivett, ACT Logged by:

SB

Test pit location:

Refer to Figure 1

Checked by:

CMC/ND

							mat	erial s	al substance				
memod	benefization	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture	consistency/ density index	200 x pocket 300 a penetro- 400 meter	structure and additional observations
		N	tered	TP5-1		-			FILL: Clayey SAND, fine to coarse grained, black, medium plasticity clay, with some foreign material	М	L		FILL
			None Encountered	TP5-1				СН	CLAY, high plasticity, red/brown, some fine grained sand	<wp< td=""><td>St</td><td></td><td>RESIDUAL PID = 0.0</td></wp<>	St		RESIDUAL PID = 0.0
			None	175-1		0. <u>5</u>		SC	Clayey SAND, fine to medium grained, grey/brown, medium plasticity clay, with some fine to coarse grained gravel	D	D/VD		EXTREMELY WEATHERED ROCK Tree root observed at 0.6m PID = 0.0
						1. <u>0</u>			Test pit TP05 terminated at 0.8m				Test Pit terminated on Very Sk progress
						- 1.5							

Sketch

18.7.13

TESTPIT GEOTFYSH09656AA.GPJ COFFEY.GDT

meth	0
N	
X	
BH	

BRE

natural exposure existing excavation backhoe bucket bulldozer blade ripper

support S shoring no resistance ranging to refusal

on date shown

■ water outflow

notes, samples, tests undisturbed sample 50mm diameter U₆₃ D V Bs undisturbed sample 63mm diameter disturbed sample vane shear (kPa) bulk sample ER environmental sample refusal

classification symbols and soil description based on unified classification system moisture dry

moist

plastic limit liquid limit

wet

M

W

S St VSt Fb VL L MD

soft firm stiff very stiff hard friable very loose medium dense

consistency/density index

very soft

dense very dense

Appendix I Laboratory Documentation

Liability & Risk Management Consulting

LRM Global Pty Ltd 65 Stubbs Street Kensington VIC 3031 Fax: Email: Web: Telephone: ABN: (03) 9371 3499 enquiries@Irmglobal.com.au www.Irmglobal.com.au (03) 9371 3400 34 116 540 277

Eurofins / mgt Environmental Consulting 3, Kingston Town Close Oakleigh Victoria 3166

Client Ref: 385457 Job Number: 9950.000 Batch Number: B7652 Received Date: July 11, 2013 Analysed Date: July 15, 2013

No of Samples: 6

Dear Tammy Lakeland,

This report presents the analytical results of samples forwarded by Eurofins / mgt Environmental Consulting for asbestos analysis.

Methodology:

The samples were examined under a Stereo Microscope and selected fibres were analysed by Polarized Light Microscopy in conjunction with Dispersion Staining Method. (LRM Global ID Method 1)

Analytical Results:

Sample No.	Sample Description	Result
TP1-1-JL06975	The sample consisted of plant matter and soils Sample Dimensions: 5.0cm X 3.0cm X 2.0cm	No Asbestos Detected Organic Fibre Detected
TP2-1-JL06976	The sample consisted of plant matter and soils Sample Dimensions: 5.0cm X 3.0cm X 2.0cm	No Asbestos Detected Organic Fibre Detected
TP3-1-JL06977	The sample consisted of plant matter and soils Sample Dimensions: 5.0cm X 3.0cm X 2.0cm	No Asbestos Detected Organic Fibre Detected
TP3-2-JL06978	The sample consisted of plant matter and soils Sample Dimensions: 5.0cm X 3.0cm X 2.0cm	No Asbestos Detected Organic Fibre Detected
TP4-1-JL06979	The sample consisted of plant matter and soils Sample Dimensions: 5.0cm X 3.0cm X 2.0cm	No Asbestos Detected Organic Fibre Detected
TP5-1-JL06980	The sample consisted of plant matter and soils Sample Dimensions: 5.0cm X 3.0cm X 2.0cm	No Asbestos Detected Organic Fibre Detected

Approved Identifier Karu Jayasundara

Report Issued by Karu Jayasundara

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Coffey Environments Pty Ltd ACT 16 Mildura Street Fyshwick ACT 2609

Attention:

Report

385457-S

Client Reference

GEOTFYSH09656AA

Received Date

Jul 09, 2013

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/hational standards.

Client Sample ID Sample Matrix			TP1-1 Soil	TP2-1 Soil	TP3-1 Soil	TP3-2 Soil
Eurofins mgt Sample No.			M13-JI06975	M13-JI06976	M13-JI06977	M13-JI06978
Date Sampled			Jul 05, 2013	Jul 05, 2013	Jul 05, 2013	Jul 05, 2013
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	4	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	4	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	-	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	-	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	2	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1		< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1		< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	9	< 0.1	< 0.1
o-Xylene	0.1	mg/kg	< 0.1		< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2		< 0.2	< 0.2
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	< 0.3
Fluorobenzene (surr.)	1	%	114		79	98
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	1	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	13.	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	4	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	4	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.5	mg/kg	< 0.5	341	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	(4)	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5		< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	(+)	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	Ģ	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	Ç	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	.0	< 0.5	< 0.5
luoranthene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
luorene	0.5	mg/kg	< 0.5		< 0.5	< 0.5
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5		< 0.5	< 0.5

Client Sample ID Sample Matrix			TP1-1 Soil	TP2-1 Soil	TP3-1 Soil	TP3-2 Soil
Eurofins mgt Sample No.			M13-JI06975	M13-JI06976	M13-JI06977	M13-JI06978
Date Sampled			Jul 05, 2013	Jul 05, 2013	Jul 05, 2013	Jul 05, 2013
Test/Reference	LOR	Unit			100000	
Polycyclic Aromatic Hydrocarbons	20.,	- Orinc				
Phenanthrene	0.5	mg/kg	< 0.5		< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	95	-	99	94
p-Terphenyl-d14 (surr.)	1	%	85	-	81	76
Total PAH	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ	0.5	mg/kg	0.6	-	0.6	0.6
Organochlorine Pesticides					1	0.0
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05		< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Chlordane	0.1	mg/kg	< 0.1		< 0.1	< 0.1
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	< 0.05	< 0.05
Toxaphene	0.1	mg/kg	< 0.1	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	93	-	113	98
Tetrachloro-m-xylene (surr.)	1	%	108	-	143	124
Organophosphorous Pesticides			100		140	124
Bolstar	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2		< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	_	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2		< 0.2	< 0.2
thoprop	0.2	mg/kg	< 0.2		< 0.2	< 0.2
enitrothion	0.2	mg/kg	< 0.2	_	< 0.2	< 0.2
ensulfothion	0.2	mg/kg	< 0.2		< 0.2	< 0.2
enthion	0.2	mg/kg	< 0.2		< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2		< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2		< 0.2	< 0.2
laled	0.5	mg/kg	< 0.5	-	< 0.5	< 0.5
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP1-1 Soil M13-JI06975 Jul 05, 2013	TP2-1 Soil M13-J106976 Jul 05, 2013	TP3-1 Soil M13-JI06977 Jul 05, 2013	TP3-2 Soil M13-JI06978 Jul 05, 2013
Organophosphorous Pesticides	2011	Onic				
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	1	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	102	-	95	86
Heavy Metals						
Arsenic	2	mg/kg	4.0	3.6	3.7	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	11	17	12
Copper	5	mg/kg	< 5	< 5	< 5	< 5
Lead	5	mg/kg	10	11	12	8.3
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	7.8	11	9.5	11
% Moisture	0.1	%	10	11	12	12
Asbestos			see attached	see attached	see attached	see attached

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP4-1 Soil M13-JI06979 Jul 05, 2013	TP5-1 Soil M13-JI06980 Jul 05, 2013
Total Recoverable Hydrocarbons - 1999 NEPM		0		
TRH C6-C9	20	mg/kg	-	< 20
TRH C10-C14	20	mg/kg	340	< 20
TRH C15-C28	50	mg/kg	-	< 50
TRH C29-C36	50	mg/kg	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	< 50
BTEX				
Benzene	0.1	mg/kg		< 0.1
Toluene	0.1	mg/kg	-	< 0.1
Ethylbenzene	0.1	mg/kg		< 0.1
o-Xylene	0.1	mg/kg	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	< 0.2
Xylenes - Total	0.3	mg/kg	-	< 0.3
Fluorobenzene (surr.)	1	%	-	110
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	1	< 0.5
TRH C6-C10	20	mg/kg	5 , 0	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20
TRH >C10-C16	50	mg/kg		< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg		< 50
TRH >C16-C34	100	mg/kg	-	< 100
TRH >C34-C40	100	mg/kg	-	< 100

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP4-1 Soil M13-JI06979 Jul 05, 2013	TP5-1 Soil M13-J106980 Jul 05, 2013
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.5	mg/kg	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	•	105
Total PAH	1	%		85
Benzo(a)pyrene TEQ	0.5	mg/kg	-	< 0.5
Organochlorine Pesticides	0.5	mg/kg	-	0.6
4.4'-DDD	0.05			
4.4'-DDE	0.05	mg/kg	-	< 0.05
4.4'-DDT	0.05	mg/kg		< 0.05
a-BHC	0.05	mg/kg	•	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05
o-BHC	0.05	mg/kg	-	< 0.05
Chlordane	0.03	mg/kg mg/kg	-	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05
Dieldrin	0.05	mg/kg		< 0.05
Endosulfan I	0.05	mg/kg		< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05
Endosulfan sulphate	0.05	mg/kg		< 0.05
Endrin	0.05	mg/kg	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05
Endrin ketone	0.05	mg/kg		< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05
Heptachlor	0.05	mg/kg		< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05
Hexachlorobenzene	0.05	mg/kg		< 0.05
Methoxychlor	0.05	mg/kg		< 0.05
Toxaphene	0.1	mg/kg	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	99
etrachloro-m-xylene (surr.)	1	%		126
Organophosphorous Pesticides				
Bolstar	0.2	mg/kg	-	< 0.2
Chlorpyrifos	0.2	mg/kg	0-	< 0.2
Demeton-O	0.2	mg/kg	(+)	< 0.2
Diazinon	0.2	mg/kg	-	< 0.2

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP4-1 Soil M13-JI06979 Jul 05, 2013	TP5-1 Soil M13-JI06980 Jul 05, 2013
Organophosphorous Pesticides	2011	OTHE		
Diazinon	0.2	mg/kg	-	< 0.2
Dichlorvos	0.2	mg/kg	-	< 0.2
Disulfoton	0.2	mg/kg	-	< 0.2
Ethion	0.2	mg/kg	-	< 0.2
Ethoprop	0.2	mg/kg	4	< 0.2
Fenitrothion	0.2	mg/kg	-	< 0.2
Fensulfothion	0.2	mg/kg	-	< 0.2
Fenthion	0.2	mg/kg	-	< 0.2
Merphos	0.2	mg/kg	-	< 0.2
Methyl azinphos	0.2	mg/kg	-	< 0.2
Methyl parathion	0.2	mg/kg	-	< 0.2
Mevinphos	0.2	mg/kg	-	< 0.2
Naled	0.5	mg/kg	-	< 0.5
Phorate	0.2	mg/kg		< 0.2
Ronnel	0.2	mg/kg	-	< 0.2
Tokuthion	0.2	mg/kg		< 0.2
Trichloronate	0.2	mg/kg		< 0.2
Triphenylphosphate (surr.)	1	%	12	103
Heavy Metals				
Arsenic	2	mg/kg	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	9.7	10
Copper	5	mg/kg	< 5	< 5
Lead	5	mg/kg	7.7	7.9
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	6.2
Zinc	5	mg/kg	14	22
% Moisture	0.1	%	12	13
Asbestos			see attached	see attached

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite 10			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jul 10, 2013	14 Day
- Method: TRH C6-C36 - MGT 100A			
BTEX	Melbourne	Jul 10, 2013	14 Day
- Method: USEPA 8260 - MGT 350A Monocyclic Aromatic Hydrocarbons and MGT 100A			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jul 10, 2013	14 Day
- Method: LM-LTM-ORG2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jul 10, 2013	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Organochlorine Pesticides	Melbourne	Jul 10, 2013	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Organophosphorous Pesticides	Melbourne	Jul 10, 2013	14 Day
- Method: USEPA 8141 Organophosphorus Pesticides			
Metals M8	Melbourne	Jul 10, 2013	28 Day
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury			
% Moisture	Melbourne	Jul 10, 2013	14 Day
Method: Method 102 - ANZECC - % Majeture			10.000

⁻ Method: Method 102 - ANZECC - % Moisture

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au

web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name:

Coffey Environments Pty Ltd ACT

Address:

16 Mildura Street

Fyshwick

ACT 2609

Client Job No.:

GEOTFYSH09656AA

Order No.:

Report #:

Phone: Fax:

385457 +61 2 6260 7288

+61 2 6260 7211

Received:

Jul 9, 2013 9:04 AM

Due: Priority: Jul 16, 2013

5 Day **Contact Name:**

Nick Davison

		Sample Detai			% Moisture	Asbestos	HOLD	Metals M8	Eurofins mgt Suite 10
	nere analysis is co								
THE RESERVE OF THE PARTY OF THE	boratory - NATA S		4271		X		X	X	X
model has been been by one of	atory - NATA Site								-
SCALL STATE OF THE STATE OF	oratory - NATA Sit	e # 20794					7		-
Sample ID	Sample Date	Compline	Madelin	LADID		X			
Sample ID	Sample Date	Sampling Time	Matrix	LABID					
TP1-1	Jul 05, 2013		Soil	M13-JI06975	Х	X			X
TP2-1	Jul 05, 2013		Soil	M13-JI06976	X	X		Х	
TP3-1	Jul 05, 2013		Soil	M13-JI06977	X	Х			X
TP3-2	Jul 05, 2013		Soil	M13-JI06978	X	X			Х
TP4-1	Jul 05, 2013	Y-1	Soil	M13-JI06979	X	X		X	
TP5-1	Jul 05, 2013		Soil	M13-JI06980	X	X			Х
TP1-2	Jul 05, 2013		Soil	M13-JI06981			X		
TP2-2	Jul 05, 2013		Soil	M13-JI06982			X		
TP3-3	Jul 05, 2013		Soil	M13-JI06983			Х	2	
TP4-2	Jul 05, 2013		Soil	M13-JI06984			X		

ABN - 50 005 085 521 e.mail : enviro@mgtlabmark.com.au

web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

130A Page 85

Company Name:

Coffey Environments Pty Ltd ACT

Address:

16 Mildura Street

Fyshwick

ACT 2609

Client Job No.:

GEOTFYSH09656AA

Order No.:

Report #:

385457

Phone: Fax:

+61 2 6260 7288 +61 2 6260 7211 Received:

Jul 9, 2013 9:04 AM

Due: Priority: Jul 16, 2013

5 Day **Contact Name:**

Nick Davison

	Sample Detail			% Moisture	Asbestos	HOLD	Metals M8	Eurofins mgt Suite 10
Laboratory where analysis is co	nducted							
Melbourne Laboratory - NATA S	ite # 1254 & 1427	11		Х		Х	Х	Х
Sydney Laboratory - NATA Site	# 18217							
Brisbane Laboratory - NATA Sit	e # 20794							
External Laboratory					X			
TP5-2 Jul 05, 2013	S	Soil	M13-JI06985			Х		

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4 Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

mg/kg: milligrams per Kilogram ua/I: micrograms per litre ppb: Parts per billion

org/100ml: Organisms per 100 millilitres

MPN/100mL: Most Probable Number of organisms per 100 millilitres

ma/l: milligrams per litre ppm: Parts per million %: Percentage NTU: Units

TERMS

Dry

Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR

SPIKE RPD

Addition of the analyte to the sample and reported as percentage recovery Relative Percent Difference between two Duplicate pieces of analysis

ICS CRM Laboratory Control Sample - reported as percent recovery Certified Reference Material - reported as percent recovery

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate

The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate

A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate

A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA

United States Environment Protection Authority

APHA ASLF

American Public Health Association Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

Chain of Custody COC

Sample Receipt Advice SRA

Client Parent - QC was performed on samples pertaining to this report CP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within NCP

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM F MGT 100A	ractions TRH C6-C36 -				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX USEPA 8260 - MGT 350A Monocyclic Aron and MGT 100A	natic Hydrocarbons				
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	1
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	, many		0.0	, 435	
Total Recoverable Hydrocarbons - 2013 NEPM F ORG2010	ractions LM-LTM-				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	ilig/kg	100	100	rass	
Polycyclic Aromatic Hydrocarbons USEPA 8270 Hydrocarbons	Polycyclic Aromatic				
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	159		0.0	1 433	
Organochlorine Pesticides USEPA 8081 Organoc	hlorine Pesticides				
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
Chlordane	mg/kg	< 0.1	0.03	Pass	
d-BHC	mg/kg	< 0.05	. 0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	Hig/kg	< 0.05	0.05	rdSS	

Test	Units	Result 1	Acceptance Limits	Limits	Qualifying Code
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Organophosphorous Pesticides USEPA 8141 Org Pesticides	ganophosphorus				
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl azinphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Naled	mg/kg	< 0.5	0.5	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank			De la Contraction de la Contra	175 103	
Metals M8 USEPA 6010/6020 Heavy Metals & USI	EPA 7470/71 Mercury				
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
	Ingrig			1 400	
LCS - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM F MGT 100A	ractions TRH C6-C36 -				
TRH C6-C9	%	104	70-130	Pass	
TRH C10-C14	%	100	70-130	Pass	
LCS - % Recovery					
BTEX USEPA 8260 - MGT 350A Monocyclic Aron and MGT 100A	natic Hydrocarbons				
Benzene	%	107	70-130	Pass	
Toluene	%	99	70-130	Pass	
Ethylbenzene	%	99	70-130	Pass	
m&p-Xylenes	%	107	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total	%	107	70-130	Pass	
.CS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions LM-LTM-				
DRG2010	1 0/	104	70-130	Pass	
TRH C6-C10	%	104	70-130	Pass	
TRH >C10-C16	%	98	70-130	Fass	
CS - % Recovery	Deliveralle Assessatio				
Polycyclic Aromatic Hydrocarbons USEPA 8270 Hydrocarbons	Polycyclic Aromatic				
Acenaphthene	%	89	70-130	Pass	
Acenaphthylene	%	91	70-130	Pass	
Anthracene	%	94	70-130	Pass	
Benz(a)anthracene	%	95	70-130	Pass	
Benzo(a)pyrene	%	116	70-130	Pass	
Benzo(b&j)fluoranthene	%	92	70-130	Pass	
Benzo(g.h.i)perylene	%	94	70-130	Pass	
Benzo(k)fluoranthene	%	99	70-130	Pass	
Chrysene	%	86	70-130	Pass	
Dibenz(a.h)anthracene	%	87	70-130	Pass	
Fluoranthene	%	91	70-130	Pass	
Fluorene	%	90	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	99	70-130	Pass	
Naphthalene	%	85	70-130	Pass	
Phenanthrene	%	87	70-130	Pass	
Pyrene	%	86	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides USEPA 8081 Organoc	chlorine Pesticides				
4.4'-DDD	%	90	70-130	Pass	
4.4'-DDE	%	86	70-130	Pass	
4.4'-DDT	%	88	70-130	Pass	
a-BHC	%	88	70-130	Pass	
Aldrin	%	89	70-130	Pass	
b-BHC	%	108	70-130	Pass	
d-BHC	%	87	70-130	Pass	1
Dieldrin	%	76	70-130	Pass	
Endosulfan I	%	88	70-130	Pass	
Endosulfan II	%	88	70-130	Pass	
Endosulfan sulphate	%	75	70-130	Pass	
Endrin	%	100	70-130	Pass	
Endrin aldehyde	%	75	70-130	Pass	
Endrin ketone	%	75	70-130	Pass	
g-BHC (Lindane)	%	88	70-130	Pass	
Heptachlor	%	94	70-130	Pass	
Heptachlor epoxide	%	82	70-130	Pass	
Hexachlorobenzene	. %	102	70-130	Pass	
Methoxychlor	%	94	70-130	Pass	
LCS - % Recovery				-	
Organophosphorous Pesticides USEPA 8141 Or	ganophosphorus			T	
Pesticides	a resident to the second				
Diazinon	%	122	70-130	Pass	
Ethion	%	86	70-130	Pass	
Fenitrothion	%	90	70-130	Pass	
Methyl parathion	%	78	70-130	Pass	
Mevinphos	%	86	70-130	Pass	


Te	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Arsenic			%	80	80-120	Pass	
Cadmium			%	91	80-120	Pass	
Chromium			%	95	80-120	Pass	
Copper			%	97	80-120	Pass	
Lead			%	96	80-120	Pass	
Mercury			%	104	75-125	Pass	
Nickel			%	96	80-120	Pass	
Zinc			%	96	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract			Result 1			
TRH C6-C9	M13-JI06975	CP	%	104	70-130	Pass	
TRH C10-C14	M13-JI06836	NCP	%	95	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	M13-JI06975	CP	%	104	70-130	Pass	
Toluene	M13-JI06975	CP	%	98	70-130	Pass	
Ethylbenzene	M13-JI06975	CP	%	99	70-130	Pass	
o-Xylene	M13-JI06975	CP	%	107	70-130	Pass	
m&p-Xylenes	M13-JI06975	CP	%	107	70-130	Pass	
Xylenes - Total	M13-JI06975	CP	%	107	70-130	Pass	
Spike - % Recovery						1 000	
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fracti	ions		Result 1			
TRH C6-C10	M13-JI06975	CP	%	104	70-130	Pass	
TRH >C10-C16	M13-JI06836	NCP	%	93	70-130	Pass	
Spike - % Recovery		1101	70	30	70-130	rass	
Polycyclic Aromatic Hydrocarl	hons			Result 1		-	
Acenaphthene	M13-JI06975	CP	%	91	70-130	Pass	
Acenaphthylene	M13-JI06975	CP	%	93			
Anthracene	M13-JI06975	CP	%	94	70-130	Pass	
Benz(a)anthracene	M13-JI06975	CP			70-130	Pass	
Benzo(a)pyrene	- 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	CP	%	93	70-130	Pass	
Benzo(b&j)fluoranthene	M13-JI06975		%	117	70-130	Pass	
POTENTIAL DESCRIPTION OF THE PROPERTY OF THE P	M13-JI06975	CP	%	83	70-130	Pass	
Benzo(g.h.i)perylene	M13-JI06975	CP	%	90	70-130	Pass	
Benzo(k)fluoranthene	M13-JI06975	CP	%	94	70-130	Pass	
Chrysene	M13-JI06975	CP	%	89	70-130	Pass	
Dibenz(a.h)anthracene	M13-JI06975	CP	%	88	70-130	Pass	
Fluoranthene	M13-JI06975	CP	%	93	70-130	Pass	
Fluorene	M13-JI06975	CP	%	90	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M13-JI06975	CP	%	92	70-130	Pass	
Naphthalene	M13-JI06975	CP	%	87	70-130	Pass	
Phenanthrene	M13-JI06975	CP	%	90	70-130	Pass	
Pyrene	M13-JI06975	CP	%	89	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	A13-JI08215	NCP	%	82	70-130	Pass	
4.4'-DDE	A13-JI08215	NCP	%	82	70-130	Pass	
4.4'-DDT	A13-JI08215	NCP	%	77	70-130	Pass	
a-BHC	A13-JI08215	NCP	%	81	70-130	Pass	
Aldrin	A13-JI08215	NCP	%	86	70-130	Pass	
b-BHC	A13-JI08215	NCP	%	99	70-130	Pass	
d-BHC	A13-JI08215	NCP	%	75	70-130	Pass	
Dieldrin	A13-JI08215	NCP	%	72	70-130	Pass	
Endosulfan I	A13-JI08215	NCP	%	80	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II	A13-JI08215	NCP	%	74			70-130	Pass	
Endosulfan sulphate	A13-JI08215	NCP	%	75			70-130	Pass	
Endrin	A13-JI08215	NCP	%	74			70-130	Pass	
Endrin aldehyde	A13-JI08215	NCP	%	76			70-130	Pass	
Endrin ketone	A13-JI08215	NCP	%	117			70-130	Pass	
g-BHC (Lindane)	A13-JI08215	NCP	%	83			70-130	Pass	
Heptachlor	A13-JI08215	NCP	%	85			70-130	Pass	
Heptachlor epoxide	A13-JI08215	NCP	%	77			70-130	Pass	
Hexachlorobenzene	A13-JI08215	NCP	%	96			70-130	Pass	
Methoxychlor	A13-JI08215	NCP	%	71			70-130	Pass	
Spike - % Recovery	7110 0100210			1993					
Organophosphorous Pestic	idos			Result 1					
Diazinon	M13-JI06960	NCP	%	118			70-130	Pass	
Ethion	M13-JI06960	NCP	%	95			70-130	Pass	
	M13-JI06960	NCP	%	101			70-130	Pass	
Fenitrothion Mothyl posethion	M13-JI06960	NCP	%	88			70-130	Pass	
Methyl parathion		NCP	%	93			70-130	Pass	
Mevinphos	M13-JI06960	INCP	70	93	-	7.35	10100	. 000	
Spike - % Recovery				Dogult 1					
Metals M8	1110 1100000	NOD	0/	Result 1			75-125	Pass	
Arsenic	M13-JI06960	NCP	%	83			75-125	Pass	
Cadmium	M13-JI06975	CP	%				75-125	Pass	
Chromium	M13-JI06975	CP	%	100			100000000000000000000000000000000000000		
Copper	M13-JI06975	CP	%	94			75-125	Pass	
Lead	M13-JI06975	CP	%	90			75-125	Pass	-
Mercury	M13-JI06975	CP	%	98			70-130	Pass	
Nickel	M13-JI06975	CP	%	83			75-125	Pass	
Zinc	M13-JI06975	CP	%	88			75-125	Pass	12 - 12 - 2
							Acceptance	Dage	Qualifyir
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifyir Code
Duplicate		Source	Units						
3,000		Source		Result 1	Result 2	RPD	Limits	Limits	
Duplicate		Source	Units mg/kg	Result 1	< 20	<1	Limits 30%	Pass	
Duplicate Total Recoverable Hydroca	rbons - 1999 NEPM Frac	Source		Result 1			30% 30%	Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9	rbons - 1999 NEPM Frac M13-JI06975	Source tions	mg/kg	Result 1	< 20	<1	30% 30% 30% 30%	Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14	rbons - 1999 NEPM Frac M13-JI06975 M13-JI06836	tions CP NCP	mg/kg mg/kg	Result 1 < 20 < 20	< 20 < 20	<1 <1	30% 30%	Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36	rbons - 1999 NEPM Frac M13-JI06975 M13-JI06836 M13-JI06836	tions CP NCP	mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50	< 20 < 20 < 50	<1 <1 <1	30% 30% 30% 30%	Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	rbons - 1999 NEPM Frac M13-JI06975 M13-JI06836 M13-JI06836	tions CP NCP	mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50	< 20 < 20 < 50 < 50	<1 <1 <1	30% 30% 30% 30%	Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate	rbons - 1999 NEPM Frac M13-JI06975 M13-JI06836 M13-JI06836	tions CP NCP	mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50	< 20 < 20 < 50 < 50	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene	rbons - 1999 NEPM Frac M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836	tions CP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1	< 20 < 20 < 50 < 50 Result-2	<1 <1 <1 <1 RPD	30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene	rbons - 1999 NEPM Frac M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975	tions CP NCP NCP NCP CP	mg/kg mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1	< 20 < 20 < 50 < 50 Result-2	<1 <1 <1 <1 <1 RPD	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene	M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975 M13-JI06975	tions CP NCP NCP NCP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1	< 20 < 20 < 50 < 50 < 50 Result-2 < 0.1 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene	M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975	tions CP NCP NCP NCP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50 < 80.1 < 0.1 < 0.1 < 0.1	< 20 < 20 < 50 < 50 < 50 Result-2 < 0.1 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes	M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975	Source tions CP NCP NCP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2	< 20 < 20 < 50 < 50 < 80 Result-2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total	M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975	tions CP NCP NCP NCP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50 < 80.1 < 0.1 < 0.1 < 0.1	< 20 < 20 < 50 < 50 < 60 Result-2 < 0.1 < 0.1 < 0.1	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate	M13-JI06975 M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975	Source tions CP NCP NCP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3	< 20 < 20 < 50 < 50 Result-2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca	M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975	tions CP NCP NCP NCP CP C	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3	< 20 < 20 < 50 < 50 < 50 Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca Naphthalene	M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975 M13-JI06975	tions CP NCP NCP NCP CP C	mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 1 < 0.5	< 20 < 20 < 50 < 50 < 50 Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 2 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca Naphthalene TRH C6-C10	M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975	tions CP NCP NCP NCP CP C	mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 1 < 0.5 < 20	< 20 < 20 < 50 < 50 < 50 Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 2 < 0.5 < 20	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca Naphthalene TRH C6-C10 TRH >C10-C16	M13-JI06975 M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975	CP C	mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 1 < 0.5 < 20 < 50	< 20 < 20 < 50 < 50 < 50 Result-2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 2 < 0.5 < 50	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34	M13-JI06975 M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975	CP C	mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 1 < 0.5 < 20 < 50 < 100	< 20 < 20 < 50 < 50 < 50 Result-2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 2 < 0.5 < 100	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40	M13-JI06975 M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975	CP C	mg/kg	Result 1 < 20 < 20 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 1 < 0.5 < 20 < 50	< 20 < 20 < 50 < 50 < 50 Result-2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 2 < 0.5 < 50	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate	M13-JI06975 M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975	CP C	mg/kg	Result 1 < 20 < 20 < 50 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 1 < 0.5 < 20 < 100 < 100	< 20 < 20 < 50 < 50 < 50 Result-2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 2 < 1.3 Result 2 < 1.5 < 20 < 50 < 100 < 100	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Duplicate Fotal Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca Naphthalene TRH C6-C10 TRH >C10-C16 TRH >C16-C34 TRH >C34-C40 Duplicate Polycyclic Aromatic Hydroca	M13-JI06975 M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975	CP C	mg/kg	Result 1 < 20 < 20 < 50 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 1 < 0.5 < 20 < 100 < 100 Result 1	< 20 < 20 < 50 < 50 < 50 Result 2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 2 < 1.3 Result 2 < 1.5 Result 2 < 1.6 Result 2 < 1.7 Result 2 < 1.7 Result 2 Result 2	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Total Recoverable Hydroca TRH C6-C9 TRH C10-C14 TRH C15-C28 TRH C29-C36 Duplicate BTEX Benzene Toluene Ethylbenzene o-Xylene m&p-Xylenes Xylenes - Total Duplicate Total Recoverable Hydroca Naphthalene TRH C6-C10 TRH > C10-C16 TRH > C16-C34	M13-JI06975 M13-JI06975 M13-JI06836 M13-JI06836 M13-JI06836 M13-JI06975	CP C	mg/kg	Result 1 < 20 < 20 < 50 < 50 < 50 Result 1 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 1 < 0.5 < 20 < 100 < 100	< 20 < 20 < 50 < 50 < 50 Result-2 < 0.1 < 0.1 < 0.1 < 0.2 < 0.3 Result 2 < 1.3 Result 2 < 1.5 < 20 < 50 < 100 < 100	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

	mgt								
Duplicate									_
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			-
Benz(a)anthracene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	_
Benzo(a)pyrene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	_
Benzo(g.h.i)perylene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	_
Benzo(k)fluoranthene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	_
Chrysene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	_
Dibenz(a.h)anthracene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M13-JI10054	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate					ME E				
Organochlorine Pesticides				Result 1	Result 2	RPD			
4.4'-DDD	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Chlordane	A13-JI08215	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
d-BHC	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	A13-JI08215	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene			mg/kg			<1	30%	Pass	
	A13-3100213	1401	mg/kg	-0.1	10.1		0070		
Duplicate Organophosphorous Pesticide	8			Result 1	Result 2	RPD			
Bolstar	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	_
Disulfoton	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M13-JI06960 M13-JI06960	NCP		< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	A DESCRIPTION OF THE PROPERTY OF THE PARTY O	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M13-JI06960 M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos Methyl azinahas		NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl azinphos	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	M13-JI06960	-	mg/kg		< 0.2	<1	30%	Pass	
Mevinphos	M13-JI06960	NCP	mg/kg	< 0.2	< 0.5	<1	30%	Pass	

Duplicate									
Organophosphorous Pes	sticides			Result 1	Result 2	RPD			
Phorate	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M13-JI06960	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	M13-JI06975	CP	mg/kg	4.0	3.1	27	30%	Pass	
Cadmium	M13-JI06975	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M13-JI06975	CP	mg/kg	12	11	6.0	30%	Pass	
Copper	M13-JI06975	CP	mg/kg	< 5	< 5	<1	- 30%	Pass	
Lead	M13-JI06975	CP	mg/kg	10	8.7	17	30%	Pass	
Mercury	M13-JI06975	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M13-JI06975	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M13-JI06975	CP	mg/kg	7.8	9.7	23	30%	Pass	

Comments

Asbestos was analysed by LRM Global. NATA accreditation number 15684. Job number 9950.000, batch number B7652.

Sample Integrity

Α
es
0

Qualifier Codes/Comments

Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note: These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Tammy Lakeland

Client Services

Carroll Lee Emily Rosenberg Stacey Jenkins Senior Analyst-Volatile (VIC) Senior Analyst-Metal (VIC)

Senior Analyst-Metal (VIC)

Glenn Jackson

Laboratory Manager
Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | right shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | right be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN = 50 005 085 521 e,mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name:

Coffey Environments Pty Ltd ACT

Address:

16 Mildura Street

Fyshwick

ACT 2609

Client Job No.:

GEOTFYSH09656AA

Order No.:

Report #:

385457

Phone: Fax:

+61 2 6260 7288 +61 2 6260 7211

Received: Due:

Jul 9, 2013 9:04 AM Jul 16, 2013

Priority: 5 Day

Contact Name: Nick Davison

		Sample Detai	il		% Moisture	Asbestos	HOLD	Metals M8	Eurofins mgt Suite 10
	here analysis is co boratory - NATA S		4074		V			.,	
	atory - NATA Site		42/1		X		X	X	X
	oratory - NATA Sit				-				
External Labo		C # 20104			-	x			
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		^			
TP1-1	Jul 05, 2013		Soil	M13-JI06975	X	X			X
TP2-1	Jul 05, 2013		Soil	M13-JI06976	X	X		X	-
TP3-1	Jul 05, 2013		Soil	M13-JI06977	X	X			Х
TP3-2	Jul 05, 2013		Soil	M13-JI06978	Х	X			X
TP4-1	Jul 05, 2013		Soil	M13-JI06979	X	X		X	
TP5-1	Jul 05, 2013		Soil	M13-JI06980	X	X		.,	X
TP1-2	Jul 05, 2013		Soil	M13-JI06981			Х		
TP2-2	Jul 05, 2013		Soil	M13-JI06982			X		
TP3-3	Jul 05, 2013		Soil	M13-JI06983			X		
TP4-2	Jul 05, 2013		Soil	M13-JI06984			Х	10	

ABN – 50 005 085 521 e.mail: enviro@mgtlabmark.com.au web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

130A Page 96

Company Name: Coffey Environments Pty Ltd ACT

Address:

16 Mildura Street

Fyshwick

ACT 2609

Client Job No.:

GEOTFYSH09656AA

Order No.:

Report #:

Phone:

Fax:

+61 2 6260 7288

385457

+61 2 6260 7211

Received:

Jul 9, 2013 9:04 AM

Due:

Jul 16, 2013

Priority: **Contact Name:**

5 Day Nick Davison

		Sample Detai	ı	% Moisture	Asbestos	HOLD	Metals M8	Eurofins mgt Suite 10
Laboratory	y where analysis is c	onducted						
	y where analysis is c Laboratory - NATA		4271	X		×	×	X
Melbourne		Site # 1254 & 1	4271	X		X	X	X
Melbourne Sydney La	Laboratory - NATA	Site # 1254 & 1 # 18217	4271	X		X	X	X
Melbourne Sydney La	Laboratory - NATA boratory - NATA Site Laboratory - NATA Si	Site # 1254 & 1 # 18217	4271	X	×	X	X	X

ABN - 50 005 085 521

e.mail: enviro@matlabmark.com.au

web : www.matlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:

Coffey Environments Pty Ltd ACT

Contact name:

Nick Davison

Client job number:

GEOTFYSH09656AA

COC number:

5626

Turn around time:

5 Day

Date/Time received:

Jul 9, 2013 9:04 AM

Eurofins | mgt reference:

385457

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 9.4 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- ✓ Organic samples had Teflon liners.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Tammy Lakeland on Phone: (+61) (3) 8564 5000 or by e.mail: TammyLakeland@eurofins.com.au

Results will be delivered electronically via e.mail to Nick Davison - nick_davison@coffey.com.

Eurofins | mgt Sample Receipt

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

coffey

Chain of Custody

Laboratory Quotation / Order No:

JOB NO: GEOTFYSHO9656 AA OF 1

Dispatch to: EUROFIA (Address & Z (CIMGS Phone No.) Oquully	TON T	3166		Sampled by:	SB							Consigning Officer: N.DAVISON Date Dispatched: 8/7/13 Courier Service: TOW PUOR TO- Consignment Note No:																	
Attention: TAMMY	CAKE CH	no.		Project Mana (report results I	tol	3.	ده	ffe	5.	ص						13.													
Relinquished by: N D AV	50N			Date:	Time:	Received by:					_	_	_					Date:	Time:										
				6/7/13	1400.				(20	JK	Ter	in	_				9/7	9.04										
									-																				
	fatrix					ped	-		~					es Require	ed		-	1											
Comments	Sample Matrix	Container Type and Preservative	af		Sample No.			Date Sampled	PAHs	TPHs	MAHs = BTEX	Metals:	30	ASBESTO	8	an off					Sample Condition on Receipt								
	SOIL	1x 125 n L(G) TM	TPI	TP1-1 TP1-2		5/7/13			2		1	5	_	7			+	11											
	l u	ll.											11	-	1			V			1								
	\ \tr	· · · · · ·	TPZ	2-1		1			7	,		1	/				1												
	Y		TPZ	1-2		ч					11			/		TE													
	4	u(TP3			4					/	/																	
	V	ч	TP:	3-2		Le					1	/		(MELL											
	k	и	TP:	4-1	4-1	1-49	TP4-1 TP4-2	TP4-1	ч								/			1715	7-1	150 70							
	и	ч	TW						T#4-1	T#4-1	T#4-1	T#4-1	1-45	4-1	4-1						ч		1=		= 1		/	/	
		V	TPY	-2		ч								1				1 0 10											
	٧	Ц		TPT-1		er.					/	/							1										
	Υ	٧.	171	2		10								/				1/1/2											
			+														11												
			+-			-	-																						
			-			-					_				-		-		-										
								-					-		-		-												
														-			-												
Special Laboratory Instructions:	B10 -	Ten/stex/PAH Cd, Cv, Cu, N,, 1	OCT Db, Z	P/OPP	/ As, C	d, Cr, C	u,	N,	PL	,2	24	49					F	REFERENC	R MUST BE ED ON ALL ENT PAGES										